期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research and test of the measurement sensing device for the downforce of no-till planter row unit gauge wheels
1
作者 Jiajie Shang Liyi Liu +4 位作者 Ruifeng Zhang Hongcheng Li shouyin hou Hongxin Liu Haitao Chen 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第2期250-259,共10页
To effectively obtain the downforce of the gauge wheels in real time,mechanical models of the interaction among the ground,gauge wheels,gauge wheel arms,and depth adjustment lever were constructed.A measuring method w... To effectively obtain the downforce of the gauge wheels in real time,mechanical models of the interaction among the ground,gauge wheels,gauge wheel arms,and depth adjustment lever were constructed.A measuring method was proposed for monitoring the downforce through a two-dimensional radial sensing device,and a corresponding prototype was designed.Through simulation analysis of the sensing device with ANSYS,a 45°angle was determined to exist between the strain gauge axis and the sensing device axis,and the Wheatstone bridging circuit of R1+R3−R5−R7(R stands for resistance strain gauge,different figures represent the strain gauge number)and R2+R4−R6−R8 was adopted.According to performance and calibration tests for the sensing device,the maximum interaction effect between the X and Y axes was 2.52%,and the output signal was stable and consistent.The standard error of the slope of the fitting equation of the downforce calculation model is 0.008.According to the field test,the average downforce of the gauge wheels was 1148,1017,843,and 713 N,at different sowing speeds of 6,8,10,and 12 km/h,respectively.The coefficients of variation were 0.40,0.41,0.62,and 0.71,respectively.The results indicate that the downforce fluctuation of the gauge wheels became more severe with increasing planting speed.Both the strain simulation analysis and field test verified that the measurement method is accurate and reliable,the performance of the sensing device is stable,the measurement method and sensing device meet the application requirements and lay a foundation for the research of accurate and stable control of downforce of no-till planter. 展开更多
关键词 no-till planter gauge wheel downforce two-dimensional radial force sensing device strain analysis measurement mode and method
原文传递
Design of variable-rate liquid fertilization control system and its stability analysis 被引量:1
2
作者 Jicheng Zhang shouyin hou +3 位作者 Runtao Wang Wenyi Ji Ping Zheng Shi Wei 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第1期109-114,共6页
Variable-rate technology(VRT)has been paid more attentions by farmers in an attempt to match inputs to local growing conditions efficiently.Farmers in every country are highly encouraged to adopt this practice rather ... Variable-rate technology(VRT)has been paid more attentions by farmers in an attempt to match inputs to local growing conditions efficiently.Farmers in every country are highly encouraged to adopt this practice rather than uniform-rate application(URA).However,the standard methods and design used to quantify application accuracy for VRT remain lacking.Therefore,a variable-rate liquid fertilization control system was designed to meet accurate fertilization demand.The designed control system could enable the real-time proportion and mixture of three kinds of liquid fertilizers,namely,N,P and K,in accordance with decision support subsystem.The task controller reads related information and sends such data to the control system,which is responsible for fertilization operation.The controller could realize liquid fertilizer adjusting through the electromagnetic flow control valves.A high-precision flow meter could measure the fertilization amount,which is sent as feedback to the controller to form a closed-loop control system based on the improved proportional-integral-derivative(PID)control algorithm that could enhance the stability and accuracy of precision variable-rate liquid fertilization control systems.Comparisons between the actual and planned application rates indicated good performance for both static and field experimental trials.Mathematical models and transfer functions for some functional modules were then constructed by classical theories to derive a system characteristic equation.To verify the static and dynamic performances,the control system was simulated using the Simulink module on Matlab.Results showed that the variable-rate fertilization was in accordance with the planned data and that the signal trace effect was good.The error was less than 5%for fertilization amount and fertilizer proportion,respectively,and the control response time was 6 s. 展开更多
关键词 fertilization control system variable-rate technology precision fertilization closed-loop control system improved PID control algorithm SIMULINK
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部