The majority of atherothrombotic events (e.g., cerebral or myocardial infarction) often occur as a result of plaque rupture or erosion in the carotid, and thereby it is urgent to assess plaque vulnerability and predic...The majority of atherothrombotic events (e.g., cerebral or myocardial infarction) often occur as a result of plaque rupture or erosion in the carotid, and thereby it is urgent to assess plaque vulnerability and predict adverse cerebrovascular events. However, the monitoring evolution from stable plaque into life-threatening high-risk plaque in the slender carotid artery is a great challenge, due to not enough spatial resolution for imaging the carotid artery based on most of reported fluorescent probes. Herein, copolymerizing with the small molecules of acceptor-donor-acceptor-donor-acceptor (A-D-A′-D-A) and the electron-donating units (D′), the screened second near-infrared (NIR-II) nanoprobe presents high quantum yield and good stability, so that it enables to image slender carotid vessel with enough spatial resolution. Encouragingly, NIR-II nanoprobe can effectively target to intraplaque macrophage, meanwhile distinguishing vulnerable plaque in carotid atherosclerosis in living mice. Moreover, the NIR-II nanoprobe can dynamically monitor the fresh bleeding spots in carotid plaque, indicating the increased risk of plaque instability. Besides, magnetic resonance imaging is integrated with NIR-II fluorescence imaging to provide contrast for subtle structure (e.g., narrow lumen and lipid pool), via incorporating ultrasmall superparamagnetic iron oxide into the NIR-II nanoprobe. Thus, such hybrid NIR-II/magnetic resonance imaging multimodal nanoprobe provides an effective tool for assessing carotid plaque burden, selecting high-risk plaque, and imaging intraplaque hemorrhage, which is promising for reducing cerebral/ myocardial infarction-associated morbidity and mortality.展开更多
In situ tracking and localization of ubiquitous bioactive small molecules(BSMs)within their native habitats is particularly challenging because of their low-molecular weight and widespread distribution properties.We r...In situ tracking and localization of ubiquitous bioactive small molecules(BSMs)within their native habitats is particularly challenging because of their low-molecular weight and widespread distribution properties.We report the proof of concept of a synchronous in situ imaging strategy,whereby the representative BSM amino-biothiols(ABs)mediate activation of the selflocalizable probe HYPQS,thereby releasing insoluble emissive precipitates to afford holistic distribution information of ABs.Notably,three organelle-targetable ABs inhibitors were innovatively fabricated for directed clearance of ABs in particular organelles,providing a powerful aid for HYPQS to achieve programmed in situ tracking of ABs in different organelles“on demand”.Biological transmission electron microscopy images confirmed that this probe released insoluble emissive precipitates at the reaction sites,which is of primary importance for achieving synchronous in situ tracking of BSMs.Furthermore,the probe HYPQS was successfully applied to monitor the dynamic changes in the endogenous ABs pool during diverse cell events.This strategy opens a promising avenue for investigating the undiscovered functional mechanism of local BSMs in relevant biological processes.展开更多
For chemotherapy, drug delivery systems often suffer from the inefficient drug loading capability, which usually cause systems toxicity and extra burden to excrete carrier itself. Moreover, the cancer therapeutic effi...For chemotherapy, drug delivery systems often suffer from the inefficient drug loading capability, which usually cause systems toxicity and extra burden to excrete carrier itself. Moreover, the cancer therapeutic efficacy is also greatly limited by the specificity of tumor microenvironment for reactive oxygen species(ROS) based cancer therapeutic strategy(e.g., chemodynamic therapy). Herein, we have developed metal-drug coordination nanoplatform that can not only be responsive to tumor microenvironment but also modulate it, so as to achieve efficient treatment of cancer. Excitingly, by employing small molecule drug(6-thioguanine) as ligand copper ions, we achieve a high drug loading rate(60.1%) and 100% of utilization of metal-drug coordination nanoplatform(Cu-TG). Interestingly, Cu-TG possessed high-efficiently horseradish peroxidase-like, glutathione peroxidase-like and catalase-like activity. Under the tumor microenvironment, Cu-TG exhibited the self-reinforcing circular catalysis that is able to amplify the cellular oxidative stress, inducing notable cancer cellular apoptosis. Moreover, Cu-TG could be activated with glutathione(GSH) and facilitated for GSH triggered 6-TG release, higher selective therapeutic effect toward cancer cells, and GSH activated T1 weight-magnetic resonance imaging. Based on the above properties, Cu-TG exhibited magnetic resonance imaging(MRI) guiding, efficient and synergistic combination of chemodynamic and chemotherapy with self-reinforcing therapeutic outcomes in vivo.展开更多
For cancer therapy,drug delivery systems are often limited by insufficient drug loading capacity,which usually results in systemic toxicity and heavy metabolic burden to excrete the carriers.Herein,we reported a“one-...For cancer therapy,drug delivery systems are often limited by insufficient drug loading capacity,which usually results in systemic toxicity and heavy metabolic burden to excrete the carriers.Herein,we reported a“one-pot”method for constructing metal(Mn^(2+))–fluorouracil(FU)-coordinated nanotheranostics(Mn-FU)by self-assembly of FU(as bridging ligands)and Mn^(2+)(as metal nodes)through Mn–N/O coordination interactions.Importantly,owing to the effective coordination between Mn and FU,Mn-FU exhibits high drug loading efficacy(47.7 wt%),encapsulation efficacy(82.6%),and relatively large yield(1 g/pot).In acidic tumor microenvironments,efficient release of FU and Mn^(2+)is realized because of nitrogen protonation.The released FU and Mn^(2+)from Mn-FU are used for chemotherapy and turn on magnetic resonance imaging(MRI),respectively,achieving MRI-correlated drug release.After PEG modification,Mn-FU displays high tumor homing ability via enhanced permeability and retention effects and quick renal clearance owing to the disassembly in acidic biological conditions.As a result,Mn-FU substantially enhances the synergistic effects of chemoradiotherapy.Meanwhile,the systemic toxic side effects of free FU-based chemoradiotherapy were greatly reduced through this nanotheranostic.Our strategy offers a facile way to construct metallodrug nanotheranostics for efficient cancer theranostics.展开更多
基金the National Key R&D Program of China(2019YFA0210103)the National Natural Science Foundation of China(grants U21A20287,22234003,21977027,and 21974039)henzhen Science and Technology Program(JCYJ20210324140205013).
文摘The majority of atherothrombotic events (e.g., cerebral or myocardial infarction) often occur as a result of plaque rupture or erosion in the carotid, and thereby it is urgent to assess plaque vulnerability and predict adverse cerebrovascular events. However, the monitoring evolution from stable plaque into life-threatening high-risk plaque in the slender carotid artery is a great challenge, due to not enough spatial resolution for imaging the carotid artery based on most of reported fluorescent probes. Herein, copolymerizing with the small molecules of acceptor-donor-acceptor-donor-acceptor (A-D-A′-D-A) and the electron-donating units (D′), the screened second near-infrared (NIR-II) nanoprobe presents high quantum yield and good stability, so that it enables to image slender carotid vessel with enough spatial resolution. Encouragingly, NIR-II nanoprobe can effectively target to intraplaque macrophage, meanwhile distinguishing vulnerable plaque in carotid atherosclerosis in living mice. Moreover, the NIR-II nanoprobe can dynamically monitor the fresh bleeding spots in carotid plaque, indicating the increased risk of plaque instability. Besides, magnetic resonance imaging is integrated with NIR-II fluorescence imaging to provide contrast for subtle structure (e.g., narrow lumen and lipid pool), via incorporating ultrasmall superparamagnetic iron oxide into the NIR-II nanoprobe. Thus, such hybrid NIR-II/magnetic resonance imaging multimodal nanoprobe provides an effective tool for assessing carotid plaque burden, selecting high-risk plaque, and imaging intraplaque hemorrhage, which is promising for reducing cerebral/ myocardial infarction-associated morbidity and mortality.
基金supported by the National Natural Science Foundation of China(22234003,22074036,22204177)the Special Funds for the Construction of Innovative Provinces in Hunan Province(2021RC4021)the Fundamental Research Funds for the Central Universities。
文摘In situ tracking and localization of ubiquitous bioactive small molecules(BSMs)within their native habitats is particularly challenging because of their low-molecular weight and widespread distribution properties.We report the proof of concept of a synchronous in situ imaging strategy,whereby the representative BSM amino-biothiols(ABs)mediate activation of the selflocalizable probe HYPQS,thereby releasing insoluble emissive precipitates to afford holistic distribution information of ABs.Notably,three organelle-targetable ABs inhibitors were innovatively fabricated for directed clearance of ABs in particular organelles,providing a powerful aid for HYPQS to achieve programmed in situ tracking of ABs in different organelles“on demand”.Biological transmission electron microscopy images confirmed that this probe released insoluble emissive precipitates at the reaction sites,which is of primary importance for achieving synchronous in situ tracking of BSMs.Furthermore,the probe HYPQS was successfully applied to monitor the dynamic changes in the endogenous ABs pool during diverse cell events.This strategy opens a promising avenue for investigating the undiscovered functional mechanism of local BSMs in relevant biological processes.
基金supported by the National Natural Science Foundation of China (51872088, 21977027, 21804039, 21675043, 21890744)。
文摘For chemotherapy, drug delivery systems often suffer from the inefficient drug loading capability, which usually cause systems toxicity and extra burden to excrete carrier itself. Moreover, the cancer therapeutic efficacy is also greatly limited by the specificity of tumor microenvironment for reactive oxygen species(ROS) based cancer therapeutic strategy(e.g., chemodynamic therapy). Herein, we have developed metal-drug coordination nanoplatform that can not only be responsive to tumor microenvironment but also modulate it, so as to achieve efficient treatment of cancer. Excitingly, by employing small molecule drug(6-thioguanine) as ligand copper ions, we achieve a high drug loading rate(60.1%) and 100% of utilization of metal-drug coordination nanoplatform(Cu-TG). Interestingly, Cu-TG possessed high-efficiently horseradish peroxidase-like, glutathione peroxidase-like and catalase-like activity. Under the tumor microenvironment, Cu-TG exhibited the self-reinforcing circular catalysis that is able to amplify the cellular oxidative stress, inducing notable cancer cellular apoptosis. Moreover, Cu-TG could be activated with glutathione(GSH) and facilitated for GSH triggered 6-TG release, higher selective therapeutic effect toward cancer cells, and GSH activated T1 weight-magnetic resonance imaging. Based on the above properties, Cu-TG exhibited magnetic resonance imaging(MRI) guiding, efficient and synergistic combination of chemodynamic and chemotherapy with self-reinforcing therapeutic outcomes in vivo.
基金This work was supported by National Key R&D Program of China(no.2019YFA0210103)National Natural Science Foundation of China(grant nos.51872088,21804039,21977027,and 21890744)the Fundamental Research Funds for the Central Universities.
文摘For cancer therapy,drug delivery systems are often limited by insufficient drug loading capacity,which usually results in systemic toxicity and heavy metabolic burden to excrete the carriers.Herein,we reported a“one-pot”method for constructing metal(Mn^(2+))–fluorouracil(FU)-coordinated nanotheranostics(Mn-FU)by self-assembly of FU(as bridging ligands)and Mn^(2+)(as metal nodes)through Mn–N/O coordination interactions.Importantly,owing to the effective coordination between Mn and FU,Mn-FU exhibits high drug loading efficacy(47.7 wt%),encapsulation efficacy(82.6%),and relatively large yield(1 g/pot).In acidic tumor microenvironments,efficient release of FU and Mn^(2+)is realized because of nitrogen protonation.The released FU and Mn^(2+)from Mn-FU are used for chemotherapy and turn on magnetic resonance imaging(MRI),respectively,achieving MRI-correlated drug release.After PEG modification,Mn-FU displays high tumor homing ability via enhanced permeability and retention effects and quick renal clearance owing to the disassembly in acidic biological conditions.As a result,Mn-FU substantially enhances the synergistic effects of chemoradiotherapy.Meanwhile,the systemic toxic side effects of free FU-based chemoradiotherapy were greatly reduced through this nanotheranostic.Our strategy offers a facile way to construct metallodrug nanotheranostics for efficient cancer theranostics.