Lung cancer is a highly heterogeneous malignancy with a complex pathogenesis, involving a series of endogenous alterations such as genetic mutations, epigenetic modifications, and oxidative stress. Recent advancements...Lung cancer is a highly heterogeneous malignancy with a complex pathogenesis, involving a series of endogenous alterations such as genetic mutations, epigenetic modifications, and oxidative stress. Recent advancements in lung cancer research, especially at the genomic and molecular biology levels, have continuously provided new potential targets and perspectives for the diagnosis and treatment of lung cancer. Therefore, this article summarizes the recent progress in the study of endogenous factors related to the pathogenesis of lung cancer, aiming to enhance the understanding of intrinsic factors in lung cancer and to organize ideas for subsequent related research.展开更多
This paper reviewed the literature on medication rule of pulmonary nodules in recent years. It is found that contemporary doctors pay more attention to regulating Qi, clearing heat and detoxifying, eliminating phlegm,...This paper reviewed the literature on medication rule of pulmonary nodules in recent years. It is found that contemporary doctors pay more attention to regulating Qi, clearing heat and detoxifying, eliminating phlegm, dissolving phlegm and dissipating masses. They use mild drugs, cold and warm treatments in parallel, combining the tastes of pungent, bitterness, and sweetness at the same time. The treatment focuses on the five viscera with emphasis on the lung meridian while also considering the spleen and stomach functions as well as soothing liver stagnation. This information aims to provide some reference for clinical treatment of pulmonary nodules.展开更多
AIM: To achieve a better understanding of the pathogenesis of new type gosling viral enteritis virus (NGVEV) and the relationship between NGVEV and host cells. METHODS: The apoptosis of duck embryo fibroblasts (DEF) i...AIM: To achieve a better understanding of the pathogenesis of new type gosling viral enteritis virus (NGVEV) and the relationship between NGVEV and host cells. METHODS: The apoptosis of duck embryo fibroblasts (DEF) induced by NGVEV was investigated by fluorescence-activated cell sorter (FACS) and fluorescence microscope after the cells were stained with Annexin V-FITC and propidium iodide (PI). RESULTS: By staining cells with a combination of fluorescein annexin V-FITC and PI, it is possible to distinguish and quantitatively analyze non-apoptotic cells (Annexin V-FITC negative/PI negative), early apoptotic cells (Annexin V-FITC positive/PI negative), late apoptotic/necrotic cells (Annexin V-FITC positive/ PI positive) and dead cells (Annexin V-FITC negative/PI positive) through flow cytometry and fluorescence microscope. The percentage of apoptotic cells increased with the incubation time and reached a maximum at 120 h after infection, while the percentage of non- apoptotic cells decreased.展开更多
Background:Recently,defects in mammalian oocytes maturation induced by environmental pollution results in the decreasing animal reproduction.Animal exposed to glyphosate is largely unavoidable because glyphosate is on...Background:Recently,defects in mammalian oocytes maturation induced by environmental pollution results in the decreasing animal reproduction.Animal exposed to glyphosate is largely unavoidable because glyphosate is one of the most widely used herbicide worldwide due to its high-efficiency and broad-spectrum effects,which causes glyphosate an environmental contaminant found in soil,water and food.During the last few years,the growing and wider use of glyphosate has raised great concerns about its effects of reproductive toxicity.In this study,using porcine models,we investigated effects of glyphosate on organelle functions during oocyte meiosis.Results:The results showed glyphosate exposure disrupted porcine oocyte maturation.Expression levels of cumulus expansion-related genes were interfered,further indicating the meiotic defects.The damaging effects were mediated by destruction of mitochondrial distribution and functions,which induced ROS accumulation and oxidative stress,also indicated by the decreased mRNA expression of related antioxidant enzyme genes.We also found an interference of endoplasmic reticulum(ER)distribution,disturbance of Ca^(2+)homeostasis,as well as fluctuation of ER stress,showing with the reduced ER stress-related mRNA or protein expression,which could indicate the dysfunction of ER for protein processing and signal transduction in glyphosate-exposed oocytes.Moreover,glyphosate exposure induced the disruption of lysosome function for autophagy,showing with the decrease of LAMP2 expression and autophagy-related genes mRNA expression.Additionally,our data showed the distribution of Golgi apparatus and the functions of ribosome were disturbed after glyphosate exposure,which might affect protein synthesis and transport.Conclusions:Collectively,our study showed that exposed to glyphosate could affect animal reproduction by compromising the quality of oocytes through its wide toxic effects on organelle functions.展开更多
Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the b...Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the behavior of Pt catalysts. In this work, an attempt is made to comprehensively review the effect of morphology control on the catalytic behavior of catalysts in the oxygen reduction reaction (ORR). First, the fundamental physicochemical changes behind morphology control, including exposing more active sites, generating appropriate lattice strains, and forming different crystalline surfaces, are highlighted. Then, recently developed strategies for tuning the morphologies of electrocatalysts, including core-shell structures, hollow structures, nanocages, nanowires, and nanosheets, are comprehensively summarized. Finally, an outlook on the future development of morphology control of Pt catalysts is presented, including rational design strategies, advanced in situ characterization techniques, novel artificial intelligence, and mechanical learning. This work is intended to provide valuable insights into designing the morphology and technological innovation of efficient redox electrocatalysts in fuel cells.展开更多
Proton exchange membrane fuel cells(PEMFCs)are playing irreplaceable roles in the construction of the future sustainable energy system.However,the insufficient performance of platinum(Pt)-based electrocatalysts for ox...Proton exchange membrane fuel cells(PEMFCs)are playing irreplaceable roles in the construction of the future sustainable energy system.However,the insufficient performance of platinum(Pt)-based electrocatalysts for oxygen reduction reaction(ORR)hinders the overall efficiency of PEMFCs.Engineering the surface strain of catalysts is considered an effective way to tune their electronic structures and therefore optimize catalytic behavior.In this paper,insights into strain engineering for improving Pt-based catalysts toward ORR are elaborated in detail.First,recent advances in understanding the strain effects on ORR catalysts are comprehensively discussed.Then,strain engineering methodologies for adjusting Ptbased catalysts are comprehensively discussed.Finally,further information on the various challenges and potential prospects for strain modulation of Pt-based catalysts is provided.展开更多
Lithium-ion batteries are widely used in electric vehicles because of their high energy density and long cycle life.However,the spontaneous combustion accident of electric vehicles caused by thermal runaway of lithium...Lithium-ion batteries are widely used in electric vehicles because of their high energy density and long cycle life.However,the spontaneous combustion accident of electric vehicles caused by thermal runaway of lithium-ion batteries seriously threatens passengers'personal and property safety.This paper expounds on the internal mechanism of lithium-ion battery thermal runaway through many previous studies and summarizes the proposed lithium-ion battery thermal runaway prediction and early warning methods.These methods can be classified into battery electrochemistry-based,battery big data analysis,and artificial intelligence methods.In this paper,various lithium-ion thermal runaway prediction and early warning methods are analyzed in detail,including the advantages and disadvantages of each method,and the challenges and future development directions of the intelligent lithium-ion battery thermal runaway prediction and early warning methods are discussed.展开更多
Dear Editor,Duck Tembusu virus(DTMUV)is the causative agent of a new,acute and severe infectious disease in ducks(Su et al.,2011).TMUV was first isolated from Culex tritaeniorhynchus in Malaysia in 1955(Platt et al.,1...Dear Editor,Duck Tembusu virus(DTMUV)is the causative agent of a new,acute and severe infectious disease in ducks(Su et al.,2011).TMUV was first isolated from Culex tritaeniorhynchus in Malaysia in 1955(Platt et al.,1975),and this strain is regarded as a reference strain.In our previous study,an infectious clone for the mosquito-derived Tembusu virus prototypical strain MM_1775(GenBank:JX477685.2)was constructed,and the rMM_1775 virus was rescued successfully(Wang et al.,2021).And the TMUV strain rCQW1 was rescued by a reverse genetic system using the viral RNAs of CQW1(GenBank:KM233707.1)(Chen et al.,2018;Guo et al.,2020),which was isolated from ducks in 2013(Zhu et al.,2015).展开更多
Pasteurella multocida(PM)has been infecting a variety of hosts for a long time,causing sustained economic losses worldwide;however,there have been limited studies on its extensive adaptability(Aktories et al.2012).Ana...Pasteurella multocida(PM)has been infecting a variety of hosts for a long time,causing sustained economic losses worldwide;however,there have been limited studies on its extensive adaptability(Aktories et al.2012).Analysis of strains data collected in our laboratory revealed that PM typically acquires foreign genes through transformation and conjugation,rather than transformation and fusion.Integrative and conjugative elements(ICEs)are a crucial mechanism that leads to abrupt changes in niche preferences and enhances environmental adaptability for bacteria,with their number far exceeding the number of plasmids and phages(Wozniak and Waldor 2010;Johnson and Grossman 2015;Botelho and Schulenburg 2021).Previous research has shown that the European bovine-sourced strain Pm36950 contains the experimentally transferable resistant ICEPmu1,which could integrate into the host chromosome or forming a circular intermediate(Michael et al.2012).Additionally,a few studies have suggested that PM strains isolated from European bovine and Asian swine might contain ICEs,but these claims lack experimental verification(Klima et al.2014;Moustafa et al.2015;Kadlec et al.2017;Peng et al.2017;Beker et al.2018;Schink et al.2022).Currently,there is no data available on ICE-carrying PM strains isolated from hosts outside of European cattle or Chinses swine.This letter presents a report on a novel ICE identified in the hypervirulent and multidrug-resistant PM HN141014 strain isolated from Chinese duck.The ICE was specifically analyzed for its resistance genes,transferable capacity and host diversity.展开更多
Porous functionalized silica nanoparticles have attracted the interest of researchers as they are excellent carriers for antibacterial drug delivery applications.In this work,porous aminated-silica nanoparticles(SiO2-...Porous functionalized silica nanoparticles have attracted the interest of researchers as they are excellent carriers for antibacterial drug delivery applications.In this work,porous aminated-silica nanoparticles(SiO2-NH2 NPs) were prepared via one-step approach through the ammonia-catalyzed hydrolysis of tetraethylorthosilicate(TEOS) and(3-aminopropyl) triethoxysilane(APTES) in a mixed water-ethanol system.The obtained SiO2-NH2 NPs displayed a spherical morphology and relatively uniform size distribution,while the morphology and structure of SiO2-NH2 NPs were mainly determined by the order of the reagents added and the pH value of the solution.After characterization,the results showed that there were a large number of-NH2 groups on the surface of porous SiO2-NH2 NPs and that the porous SiO2-NH2 NPs had a large surface area of 476 m2 g-1 with an average pore width of 4.3 nm.Through an absorbing-releasing experiment and bacterial test,those SiO2-NH2 NPs were found to exhibit efficient absorption and release of drugs as well as a pH-de pendent release pattern of epirubicin-loaded SiO2-NH2 NPs.Meanwhile,SiO2-NH2@capsaicin NPs exhibited antibacterial properties.Those porous SiO2-NH2 NPs could be a candidate for drug delivery for antibacterial applications owing to their tailored porous structure and high surface area.展开更多
Dear Editor,Duck Tembusu virus(DTMUV),a member of the Flavivirus genus within the Flaviviridae family,has caused huge economic losses to the poultry industry in China and even in Asia since 2010(Zhang et al.2017).The ...Dear Editor,Duck Tembusu virus(DTMUV),a member of the Flavivirus genus within the Flaviviridae family,has caused huge economic losses to the poultry industry in China and even in Asia since 2010(Zhang et al.2017).The first strain of Tembusu virus(TMUV)MM_1775 was isolated from mosquitoes in 1955 in Malaysia(Platt et al.1975).DTMUV CQW1 strain(GenBank:KM233707.1)was isolated from the liver tissue of Cherry Valley ducks in southwest China in 2015(Zhu et al.2015).The positive control rCQW1 was rescued from an infectious clone that contained the full-length cDNA of CQW1.And the complete cDNA was positioned under the control of the T7 promoter elements for in vitro transcription(Chen et al.2018).The relationship between TMUV evolution and pathogenic variants has not been revealed.The fundamental reason is the lack of the in vitro operation platform for the prototypical strain genome.展开更多
The hadal zone,mostly comprising of deep trenches and constituting of the deepest part of the world’s oceans,represents the least explored habitat but one of the last frontiers on our planet.The present scientific un...The hadal zone,mostly comprising of deep trenches and constituting of the deepest part of the world’s oceans,represents the least explored habitat but one of the last frontiers on our planet.The present scientific understanding of the hadal environment is still relatively rudimentary,particularly in comparison with that of shallower marine environments.In the last 30 years,continuous efforts have been launched in deepening our knowledge regarding the ecology of the hadal trench.However,the geological and environmental processes that potentially affect the sedimentary,geochemical and biological processes in hadal trenches have received less attention.Here,we review recent advances in the geology,biology,and environment of hadal trenches and offer a perspective of the hadal science involved therein.For the first time,we release highdefinition images taken by a new full-ocean-depth manned submersible Fendouzhe that reveal novel species with an unexpectedly high density,outcrops of mantle and basaltic rocks,and anthropogenic pollutants at the deepest point of the world’s ocean.We advocate that the hydration of the hadal lithosphere is a driving force that influences a variety of sedimentary,geochemical,and biological processes in the hadal trench.Hadal lithosphere might host the Earth’s deepest subsurface microbial ecosystem.Future research,combined with technological advances and international cooperation,should focus on establishing the intrinsic linkage of the geology,biology,and environment of the hadal trenches.展开更多
Incorporating antibacterial agent into biomimetic coating inspired by natural organisms with micronano structure surface has generated more interest for antifouling applications.In this work,poly(dimethylsiloxane)(PDM...Incorporating antibacterial agent into biomimetic coating inspired by natural organisms with micronano structure surface has generated more interest for antifouling applications.In this work,poly(dimethylsiloxane)(PDMS)-based triblock copolymers and sub-20 nm nanoparticles Ag and heterogeneous Fe_(3)O_(4)-coated Ag(Fe_(3)O_(4)@Ag)were used to construct microphase separation topography with oriented copolymer blocks structure.The artificial surface was verified by atomic force microscopy and scanning electron microscopy images.Meanwhile,the surface exhibited relative stable hydrophobic property,which was demonstrated by the water contact angle and dynamic air-bubble contact angle measurements.Consequently,after immersed in BSA solution 24 h and 720 h,the actual BSA absorption amount of the surface with Fe_(3)O_(4)@Ag nanoparticles was as low as 10%and 27%that of the initial BSA amount,respectively.Moreover,the surface also showed remarkable antibacterial performance,which effectively suppressed the growth rate of Escherichia coli.The strategy of constructing the flexible micro p hase separation structure by introducing heterogeneous inorganic antibacterial nanoparticles into a block copolymer substrate opens up a new way to create an antifouling surface coating.展开更多
文摘Lung cancer is a highly heterogeneous malignancy with a complex pathogenesis, involving a series of endogenous alterations such as genetic mutations, epigenetic modifications, and oxidative stress. Recent advancements in lung cancer research, especially at the genomic and molecular biology levels, have continuously provided new potential targets and perspectives for the diagnosis and treatment of lung cancer. Therefore, this article summarizes the recent progress in the study of endogenous factors related to the pathogenesis of lung cancer, aiming to enhance the understanding of intrinsic factors in lung cancer and to organize ideas for subsequent related research.
文摘This paper reviewed the literature on medication rule of pulmonary nodules in recent years. It is found that contemporary doctors pay more attention to regulating Qi, clearing heat and detoxifying, eliminating phlegm, dissolving phlegm and dissipating masses. They use mild drugs, cold and warm treatments in parallel, combining the tastes of pungent, bitterness, and sweetness at the same time. The treatment focuses on the five viscera with emphasis on the lung meridian while also considering the spleen and stomach functions as well as soothing liver stagnation. This information aims to provide some reference for clinical treatment of pulmonary nodules.
基金The National Natural Science Foundation of China, No. 39970561The Key Projects in the National Science and Technology Pillar Program, 2007Z06-017+2 种基金Program for New Century Excellent Talents from Universities, Chinese Ministry of Education, No. NCET-04-0906/NCET-06-0818Fund of the Discipline Leaders of Sichuan Province, No. SZD0418Culture Fund for Excellent Doctoral Dissertations of Sichuan Agricultural University, 2008scybpy-1
文摘AIM: To achieve a better understanding of the pathogenesis of new type gosling viral enteritis virus (NGVEV) and the relationship between NGVEV and host cells. METHODS: The apoptosis of duck embryo fibroblasts (DEF) induced by NGVEV was investigated by fluorescence-activated cell sorter (FACS) and fluorescence microscope after the cells were stained with Annexin V-FITC and propidium iodide (PI). RESULTS: By staining cells with a combination of fluorescein annexin V-FITC and PI, it is possible to distinguish and quantitatively analyze non-apoptotic cells (Annexin V-FITC negative/PI negative), early apoptotic cells (Annexin V-FITC positive/PI negative), late apoptotic/necrotic cells (Annexin V-FITC positive/ PI positive) and dead cells (Annexin V-FITC negative/PI positive) through flow cytometry and fluorescence microscope. The percentage of apoptotic cells increased with the incubation time and reached a maximum at 120 h after infection, while the percentage of non- apoptotic cells decreased.
基金supported by the Fundamental Research Funds for the Central Universities(KYCXJC2022001,KYYZ202102)the National Natural Science Foundation of China(32170857).
文摘Background:Recently,defects in mammalian oocytes maturation induced by environmental pollution results in the decreasing animal reproduction.Animal exposed to glyphosate is largely unavoidable because glyphosate is one of the most widely used herbicide worldwide due to its high-efficiency and broad-spectrum effects,which causes glyphosate an environmental contaminant found in soil,water and food.During the last few years,the growing and wider use of glyphosate has raised great concerns about its effects of reproductive toxicity.In this study,using porcine models,we investigated effects of glyphosate on organelle functions during oocyte meiosis.Results:The results showed glyphosate exposure disrupted porcine oocyte maturation.Expression levels of cumulus expansion-related genes were interfered,further indicating the meiotic defects.The damaging effects were mediated by destruction of mitochondrial distribution and functions,which induced ROS accumulation and oxidative stress,also indicated by the decreased mRNA expression of related antioxidant enzyme genes.We also found an interference of endoplasmic reticulum(ER)distribution,disturbance of Ca^(2+)homeostasis,as well as fluctuation of ER stress,showing with the reduced ER stress-related mRNA or protein expression,which could indicate the dysfunction of ER for protein processing and signal transduction in glyphosate-exposed oocytes.Moreover,glyphosate exposure induced the disruption of lysosome function for autophagy,showing with the decrease of LAMP2 expression and autophagy-related genes mRNA expression.Additionally,our data showed the distribution of Golgi apparatus and the functions of ribosome were disturbed after glyphosate exposure,which might affect protein synthesis and transport.Conclusions:Collectively,our study showed that exposed to glyphosate could affect animal reproduction by compromising the quality of oocytes through its wide toxic effects on organelle functions.
基金the Natural Science Foundation of Shaanxi Province,China(No.2023-JC-YB-122)the High-level Innovation and Entrepreneurship Talent Project from Qinchuangyuan of Shaanxi Province,China(No.QCYRCXM-2022-226)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.D5000210987)the Joint Fund Project-Enterprise-Shaanxi Coal Joint Fund Project,China(No.2021JLM-38)the National Natural Science Foundation of China(Grant No.22379123,No.22250710676),the Fujian Province Minjiang Scholar Program,China.
文摘Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the behavior of Pt catalysts. In this work, an attempt is made to comprehensively review the effect of morphology control on the catalytic behavior of catalysts in the oxygen reduction reaction (ORR). First, the fundamental physicochemical changes behind morphology control, including exposing more active sites, generating appropriate lattice strains, and forming different crystalline surfaces, are highlighted. Then, recently developed strategies for tuning the morphologies of electrocatalysts, including core-shell structures, hollow structures, nanocages, nanowires, and nanosheets, are comprehensively summarized. Finally, an outlook on the future development of morphology control of Pt catalysts is presented, including rational design strategies, advanced in situ characterization techniques, novel artificial intelligence, and mechanical learning. This work is intended to provide valuable insights into designing the morphology and technological innovation of efficient redox electrocatalysts in fuel cells.
基金supported by the Natural Science Foundation of Shaanxi Province,China(Nos.2023-JC-YB-122,2024JCYBQN-0072)the High-level Innovation and Entrepreneurship Talent Project from Qinchuangyuan of Shaanxi Province,China(No.QCYRCXM-2022-226)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.D5000210987)the Joint Fund Project-Enterprise-Shaanxi Coal Joint Fund Project,China(No.2021JLM-38)the National Natural Science Foundation of China(Grant No.22379123,No.22250710676)the Fujian Province Minjiang Scholar Program,China.
文摘Proton exchange membrane fuel cells(PEMFCs)are playing irreplaceable roles in the construction of the future sustainable energy system.However,the insufficient performance of platinum(Pt)-based electrocatalysts for oxygen reduction reaction(ORR)hinders the overall efficiency of PEMFCs.Engineering the surface strain of catalysts is considered an effective way to tune their electronic structures and therefore optimize catalytic behavior.In this paper,insights into strain engineering for improving Pt-based catalysts toward ORR are elaborated in detail.First,recent advances in understanding the strain effects on ORR catalysts are comprehensively discussed.Then,strain engineering methodologies for adjusting Ptbased catalysts are comprehensively discussed.Finally,further information on the various challenges and potential prospects for strain modulation of Pt-based catalysts is provided.
基金National Natural Science Foundation of China(NSFC)under the grant number of 52177218.
文摘Lithium-ion batteries are widely used in electric vehicles because of their high energy density and long cycle life.However,the spontaneous combustion accident of electric vehicles caused by thermal runaway of lithium-ion batteries seriously threatens passengers'personal and property safety.This paper expounds on the internal mechanism of lithium-ion battery thermal runaway through many previous studies and summarizes the proposed lithium-ion battery thermal runaway prediction and early warning methods.These methods can be classified into battery electrochemistry-based,battery big data analysis,and artificial intelligence methods.In this paper,various lithium-ion thermal runaway prediction and early warning methods are analyzed in detail,including the advantages and disadvantages of each method,and the challenges and future development directions of the intelligent lithium-ion battery thermal runaway prediction and early warning methods are discussed.
文摘Dear Editor,Duck Tembusu virus(DTMUV)is the causative agent of a new,acute and severe infectious disease in ducks(Su et al.,2011).TMUV was first isolated from Culex tritaeniorhynchus in Malaysia in 1955(Platt et al.,1975),and this strain is regarded as a reference strain.In our previous study,an infectious clone for the mosquito-derived Tembusu virus prototypical strain MM_1775(GenBank:JX477685.2)was constructed,and the rMM_1775 virus was rescued successfully(Wang et al.,2021).And the TMUV strain rCQW1 was rescued by a reverse genetic system using the viral RNAs of CQW1(GenBank:KM233707.1)(Chen et al.,2018;Guo et al.,2020),which was isolated from ducks in 2013(Zhu et al.,2015).
基金supported by the earmarked fund for China Agriculture Research System(CARS-42-17)the Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System(SCCXTD-2021-18)。
文摘Pasteurella multocida(PM)has been infecting a variety of hosts for a long time,causing sustained economic losses worldwide;however,there have been limited studies on its extensive adaptability(Aktories et al.2012).Analysis of strains data collected in our laboratory revealed that PM typically acquires foreign genes through transformation and conjugation,rather than transformation and fusion.Integrative and conjugative elements(ICEs)are a crucial mechanism that leads to abrupt changes in niche preferences and enhances environmental adaptability for bacteria,with their number far exceeding the number of plasmids and phages(Wozniak and Waldor 2010;Johnson and Grossman 2015;Botelho and Schulenburg 2021).Previous research has shown that the European bovine-sourced strain Pm36950 contains the experimentally transferable resistant ICEPmu1,which could integrate into the host chromosome or forming a circular intermediate(Michael et al.2012).Additionally,a few studies have suggested that PM strains isolated from European bovine and Asian swine might contain ICEs,but these claims lack experimental verification(Klima et al.2014;Moustafa et al.2015;Kadlec et al.2017;Peng et al.2017;Beker et al.2018;Schink et al.2022).Currently,there is no data available on ICE-carrying PM strains isolated from hosts outside of European cattle or Chinses swine.This letter presents a report on a novel ICE identified in the hypervirulent and multidrug-resistant PM HN141014 strain isolated from Chinese duck.The ICE was specifically analyzed for its resistance genes,transferable capacity and host diversity.
基金supported financially by National Natural Science Foundation of China (No. 51706166 and No. 51773163)Innovation Group of Natural Science Foundation of Hubei Province (No. 2016CFA008)Joint Funds of China (No. 20171f0107)。
文摘Porous functionalized silica nanoparticles have attracted the interest of researchers as they are excellent carriers for antibacterial drug delivery applications.In this work,porous aminated-silica nanoparticles(SiO2-NH2 NPs) were prepared via one-step approach through the ammonia-catalyzed hydrolysis of tetraethylorthosilicate(TEOS) and(3-aminopropyl) triethoxysilane(APTES) in a mixed water-ethanol system.The obtained SiO2-NH2 NPs displayed a spherical morphology and relatively uniform size distribution,while the morphology and structure of SiO2-NH2 NPs were mainly determined by the order of the reagents added and the pH value of the solution.After characterization,the results showed that there were a large number of-NH2 groups on the surface of porous SiO2-NH2 NPs and that the porous SiO2-NH2 NPs had a large surface area of 476 m2 g-1 with an average pore width of 4.3 nm.Through an absorbing-releasing experiment and bacterial test,those SiO2-NH2 NPs were found to exhibit efficient absorption and release of drugs as well as a pH-de pendent release pattern of epirubicin-loaded SiO2-NH2 NPs.Meanwhile,SiO2-NH2@capsaicin NPs exhibited antibacterial properties.Those porous SiO2-NH2 NPs could be a candidate for drug delivery for antibacterial applications owing to their tailored porous structure and high surface area.
基金This work was funded by grants from,the National Key Research and Development Program of China(2017YFD0500800)the Sichuan-international joint research for science and technology(2018HH0098)+1 种基金China Agricultural Research System(CARS-42-17)the Program Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System(SCCXTD-2020-18)。
文摘Dear Editor,Duck Tembusu virus(DTMUV),a member of the Flavivirus genus within the Flaviviridae family,has caused huge economic losses to the poultry industry in China and even in Asia since 2010(Zhang et al.2017).The first strain of Tembusu virus(TMUV)MM_1775 was isolated from mosquitoes in 1955 in Malaysia(Platt et al.1975).DTMUV CQW1 strain(GenBank:KM233707.1)was isolated from the liver tissue of Cherry Valley ducks in southwest China in 2015(Zhu et al.2015).The positive control rCQW1 was rescued from an infectious clone that contained the full-length cDNA of CQW1.And the complete cDNA was positioned under the control of the T7 promoter elements for in vitro transcription(Chen et al.2018).The relationship between TMUV evolution and pathogenic variants has not been revealed.The fundamental reason is the lack of the in vitro operation platform for the prototypical strain genome.
基金This work was financially supported by the National Key Research and Development Program of China(grant nos.2016YFC0300503,2016YFC0300600,2016YFC0304900).
文摘The hadal zone,mostly comprising of deep trenches and constituting of the deepest part of the world’s oceans,represents the least explored habitat but one of the last frontiers on our planet.The present scientific understanding of the hadal environment is still relatively rudimentary,particularly in comparison with that of shallower marine environments.In the last 30 years,continuous efforts have been launched in deepening our knowledge regarding the ecology of the hadal trench.However,the geological and environmental processes that potentially affect the sedimentary,geochemical and biological processes in hadal trenches have received less attention.Here,we review recent advances in the geology,biology,and environment of hadal trenches and offer a perspective of the hadal science involved therein.For the first time,we release highdefinition images taken by a new full-ocean-depth manned submersible Fendouzhe that reveal novel species with an unexpectedly high density,outcrops of mantle and basaltic rocks,and anthropogenic pollutants at the deepest point of the world’s ocean.We advocate that the hydration of the hadal lithosphere is a driving force that influences a variety of sedimentary,geochemical,and biological processes in the hadal trench.Hadal lithosphere might host the Earth’s deepest subsurface microbial ecosystem.Future research,combined with technological advances and international cooperation,should focus on establishing the intrinsic linkage of the geology,biology,and environment of the hadal trenches.
基金financially supported by the National Natural Science Foundation of China(Nos.51706166 and 51773163)the Joint Funds of the Equipment Pre-Research of Ministry of Education of China(No.6141A02022225)+1 种基金Sanya Science and Education Innovation Park of Wuhan University of Technology(2020KF0025)the Fundamental Research Funds for the Central Universities(WUT:2020III038GX)。
文摘Incorporating antibacterial agent into biomimetic coating inspired by natural organisms with micronano structure surface has generated more interest for antifouling applications.In this work,poly(dimethylsiloxane)(PDMS)-based triblock copolymers and sub-20 nm nanoparticles Ag and heterogeneous Fe_(3)O_(4)-coated Ag(Fe_(3)O_(4)@Ag)were used to construct microphase separation topography with oriented copolymer blocks structure.The artificial surface was verified by atomic force microscopy and scanning electron microscopy images.Meanwhile,the surface exhibited relative stable hydrophobic property,which was demonstrated by the water contact angle and dynamic air-bubble contact angle measurements.Consequently,after immersed in BSA solution 24 h and 720 h,the actual BSA absorption amount of the surface with Fe_(3)O_(4)@Ag nanoparticles was as low as 10%and 27%that of the initial BSA amount,respectively.Moreover,the surface also showed remarkable antibacterial performance,which effectively suppressed the growth rate of Escherichia coli.The strategy of constructing the flexible micro p hase separation structure by introducing heterogeneous inorganic antibacterial nanoparticles into a block copolymer substrate opens up a new way to create an antifouling surface coating.