期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fine mapping and validation of a stable QTL for thousand-kernel weight in wheat(Triticum aestivum L.)
1
作者 Deyuan Meng Aamana Batool +18 位作者 Yazhou Xuan Ruiqing Pan Na Zhang Wei Zhang Liya Zhi Xiaoli Ren Wenqing Li Jijie Li Yanxiao Niu shuzhi zheng Jun Ji Xiaoli Shi Lei Wang Hongqing Ling Chunhua Zhao Fa Cui Xigang Liu Junming Li Liqiang Song 《The Crop Journal》 SCIE CSCD 2023年第5期1491-1500,共10页
Thousand-kernel weight(TKW)is a measure of grain weight,a target of wheat breeding.The object of this study was to fine-map a stable quantitative trait loci(QTL)for TKW and identify its candidate gene in a recombinant... Thousand-kernel weight(TKW)is a measure of grain weight,a target of wheat breeding.The object of this study was to fine-map a stable quantitative trait loci(QTL)for TKW and identify its candidate gene in a recombinant inbred line(RIL)population derived from the cross of Kenong 9204(KN9204)and Jing411(J411).On a high-density genetic linkage map,24,26 and 25 QTL were associated with TKW,kernel length(KL),and kernel width(KW),respectively.A major and stable QTL,QTkw-2D,was mapped to an8.3 cM interval on chromosome arm 2DL.By saturation of polymorphic markers in its target region,QTkw-2D was confined to a 9.13 Mb physical interval using a secondary mapping population derived from a residually heterozygous line(F6:7).This interval was further narrowed to 2.52 Mb using QTkw-2D near-isogenic lines(NILs).NILs~(KN9204)had higher fresh and dry weights than NILsJ411at various grain-filling stages.The TKW and KW of NILs~(KN9204)were much higher than those of NILsJ411in field trials.By comparison of both DNA sequence and expression between KN9204 and J411,TraesCS2D02G460300.1(TraesKN2D01HG49350)was assigned as a candidate gene for QTkw-2D.This was confirmed by RNA sequencing(RNA-seq)of QTkw-2D NILs.These results provide the basis of map-based cloning of QTkw-2D,and DNA markers linked to the candidate gene may be used in marker-assisted selection. 展开更多
关键词 WHEAT Thousand-kernel weight Fine mapping Candidate gene
下载PDF
Heat Shock Factor A1s are required for phytochrome-interacting factor 4-mediated thermomorphogenesis in Arabidopsis
2
作者 Bingjie Li Shimeng Jiang +7 位作者 Liang Gao Wenhui Wang Haozheng Luo Yining Dong Zhihua Gao shuzhi zheng Xinye Liu Wenqiang Tang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第1期20-35,共16页
Thermomorphogenesis and the heat shock(HS)response are distinct thermal responses in plants that are regulated by PHYTOCHROME-INTERACTING FACTOR 4(PIF4)and HEAT SHOCK FACTOR A1s(HSFA1s),respectively.Little is known ab... Thermomorphogenesis and the heat shock(HS)response are distinct thermal responses in plants that are regulated by PHYTOCHROME-INTERACTING FACTOR 4(PIF4)and HEAT SHOCK FACTOR A1s(HSFA1s),respectively.Little is known about whether these responses are interconnected and whether they are activated by similar mechanisms.An analysis of transcriptome dynamics in response to warm temperature(28℃)treatment revealed that 30 min of exposure activated the expression of a subset of HSFA1 target genes in Arabidopsis thaliana.Meanwhile,a loss-of-function HSFA1 quadruple mutant(hsfa1-cq)was insensitive to warm temperature-induced hypocotyl growth.In hsfa1-cq plants grown at 28℃,the protein and transcript levels of PIF4 were greatly reduced,and the circadian rhythm of many thermomorphogenesis-related genes(including PIF4)was disturbed.Additionally,the nuclear localization of HSFA1s and the binding of HSFA1d to the PIF4 promoter increased following warm temperature exposure,whereas PIF4 overexpression in hsfa1-cq partially rescued the altered warm temperature-induced hypocotyl growth of the mutant.Taken together,these results suggest that HSFA1s are required for PIF4 accumulation at a warm temperature,and they establish a central role for HSFA1s in regulating both thermomorphogenesis and HS responses in Arabidopsis. 展开更多
关键词 HSFA1 PIF4 thermomorphogenesis
原文传递
Boosting wheat functional genomics via an indexed EMS mutant library of KN9204
3
作者 Dongzhi Wang Yongpeng Li +21 位作者 Haojie Wang Yongxin Xu Yiman Yang Yuxin Zhou Zhongxu Chen Yuqing Zhou Lixuan Gui Yi Guo Chunjiang Zhou Wenqiang Tang shuzhi zheng Lei Wang Xiulin Guo Yingjun Zhang Fa Cui Xuelei Lin Yuling Jiao Yuehui He Junming Li Fei He Xigang Liu Jun Xiao 《Plant Communications》 SCIE CSCD 2023年第4期58-76,共19页
A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation.However,the lack of gene-indexed mutants and the low transformation efficiency... A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation.However,the lack of gene-indexed mutants and the low transformation efficiency of wheat limit in-depth gene functional studies and genetic manipulation for breeding.In this study,we created a library for KN9204,a popular wheat variety in northern China,with a reference genome,transcriptome,and epigenome of different tissues,using ethyl methyl sulfonate(EMS)mutagenesis.This library contains a vast developmental diversity of critical tissues and transition stages.Exome capture sequencing of 2090 mutant lines using KN9204 genome-designed probes revealed that 98.79%of coding genes had mutations,and each line had an average of 1383 EMS-type SNPs.We identified new allelic variations for crucial agronomic trait-related genes such as Rht-D1,Q,TaTB1,and WFZP.We tested 100 lines with severemutations in 80 NAC transcription factors(TFs)under drought and salinity stress and identified 13 lines with altered sensitivity.Further analysis of three lines using transcriptome and chromatin accessibility data revealed hundreds of direct NAC targets with altered transcription patterns under salt or drought stress,including SNAC1,DREB2B,CML16,and ZFP182,factors known to respond to abiotic stress.Thus,we have generated and indexed a KN9204 EMS mutant library that can facilitate functional genomics research and offer resources for genetic manipulation of wheat. 展开更多
关键词 WHEAT exome capture sequencing EMS mutagenesis functional genomics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部