期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Surface-Modified Graphene Oxide/Lead Sulfide Hybrid Film-Forming Ink for High-Efficiency Bulk Nano-Heterojunction Colloidal Quantum Dot Solar Cells 被引量:2
1
作者 Yaohong Zhang Guohua Wu +7 位作者 Chao Ding Feng Liu Dong Liu Taizo Masuda Kenji Yoshino shuzi hayase Ruixiang Wang Qing Shen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期56-69,共14页
Solution-processed colloidal quantum dot solar cells(CQDSCs) is a promising candidate for new generation solar cells.To obtain stable and high performance lead sulfide(PbS)-based CQDSCs,high carrier mobility and low n... Solution-processed colloidal quantum dot solar cells(CQDSCs) is a promising candidate for new generation solar cells.To obtain stable and high performance lead sulfide(PbS)-based CQDSCs,high carrier mobility and low non-radiative recombination center density in the PbS CQDs active layer are required.In order to effectively improve the carrier mobility in PbS CQDs layer of CQDSCs,butylamine(BTA)-modified graphene oxide(BTA@GO) is first utilized in PbS-PbX2(X=I-,Br-) CQDs ink to deposit the active layer of CQDSCs through one-step spin-coating method.Such surface treatment of GO dramatically upholds the intrinsic superior hole transfer peculiarity of GO and attenuates the hydrophilicity of GO in order to allow for its good dispersibility in ink solvent.The introduction of B TA@GO in CQDs layer can build up a bulk nano-heterojunction architecture,which provides a smooth charge carrier transport channel in turn improves the carrier mobility and conductivity,extends the carriers lifetime and reduces the trap density of PbS-PbX2 CQDs film.Finally,the BTA@GO/PbS-PbX2 hybrid CQDs film-based relatively large-area(0.35 cm2) CQDSCs shows a champion power conversion efficiency of 11.7% which is increased by 23.1% compared with the control device. 展开更多
关键词 Quantum dot solar cells PbS colloidal quantum dots Hole extraction Graphene oxide Surface modified
下载PDF
Ultrafast selective extraction of hot holes from cesium lead iodide perovskite films 被引量:1
2
作者 Qing Shen Teresa S.Ripolles +8 位作者 Jacky Even Yaohong Zhang Chao Ding Feng Liu Takuya Izuishi Naoki Nakazawa Taro Toyoda Yuhei Ogomi shuzi hayase 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1170-1174,共5页
Lead halide perovskites have some unique properties which are very promising for optoelectronic applications such as solar cells, LEDs and lasers. One important and expected application of perovskite halide semiconduc... Lead halide perovskites have some unique properties which are very promising for optoelectronic applications such as solar cells, LEDs and lasers. One important and expected application of perovskite halide semiconductors is solar cell operation including hot carriers. This advanced solar cell concept allows overcoming the Shockley–Queisser efficiency limit, thereby achieving energy conversion efficiency as high as 66% by extracting hot carriers. Understanding ultrafast photoexcited carrier dynamics and extraction in lead halide perovskites is crucial for these applications. Here, we clarify the hot carrier cooling and transfer dynamics in all-inorganic cesium lead iodide(CsPbI_3) perovskite using transient absorption spectroscopy and Al_2O_3, poly(3-hexylthiophene-2,5-diyl)(P_3HT) and TiO_2 as selective contacts. We find that slow hot carrier cooling occurs on a timescale longer than 10 ps in the cases of CsPbI_3/Al_2O_3 and CsPbI_3/TiO_2, which is attributed to hot phonon bottleneck for the high photoexcited carrier density. An efficient ultrafast hole transfer from CsPbI_3 to the P_3 HT hole extracting layer is observed. These results suggest that hot holes can be extracted by appropriate selective contacts before energy dissipation into the halide perovskite lattice and that CsPbI_3 has a potential for hot carrier solar cell applications. 展开更多
关键词 碘化物 抽取 太阳能电池 电影 Al2O3 卤化物
下载PDF
Photovoltaics and Photoexcited Carrier Dynamics of Double-Layered CdS/CdSe Quantum Dot-Sensitized Solar Cells 被引量:1
3
作者 Taro Toyoda Yohei Onishi +3 位作者 Kenji Katayama Tsuguo Sawada shuzi hayase Qing Shen 《材料科学与工程(中英文A版)》 2013年第9期601-608,共8页
关键词 CDSE量子点 太阳能电池 子动力学 载流子 光伏 敏化 光生 TiO2电极
下载PDF
Influence of charge transport layer on the crystallinity and charge extraction of pure tin-based halide perovskite film
4
作者 Yaohong Zhang Muhammad Akmal Kamarudin +9 位作者 Qiao Li Chao Ding Yong Zhou Yingfang Yao Zhigang Zou Satoshi Iikubo Takashi Minemoto Kenji Yoshino shuzi hayase Qing Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期612-615,I0017,共5页
As one of the most compelling photovoltaic devices, halide perovskite (PVK) solar cells have achieved a new surprising record power conversion efficiency (PCE) of 25.8%in 2021 [1]. This demonstrates the great potentia... As one of the most compelling photovoltaic devices, halide perovskite (PVK) solar cells have achieved a new surprising record power conversion efficiency (PCE) of 25.8%in 2021 [1]. This demonstrates the great potential of halide PVK solar cells as a highly competitive substitute to replace silicon-based solar cells in the photovoltaic market [2–6]. 展开更多
关键词 Tin-based halide perovskite Charge transport layers CRYSTALLINITY Charge extraction Photoexcited carrier dynamics
下载PDF
Enhanced efficiency and stability in Sn-based perovskite solar cells by trimethylsilyl halide surface passivation
5
作者 Zheng Zhang Liang Wang +14 位作者 Ajay Kumar Baranwal Shahrir Razey Sahamir Gaurav Kapil Yoshitaka Sanehira Muhammad Akmal Kamarudin Kohei Nishimura Chao Ding Dong Liu Yusheng Li Hua Li Mengmeng Chen Qing Shen Teresa SRipolles Juan Bisquert shuzi hayase 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期604-611,I0016,共9页
Lead free tin perovskite solar cells(PKSCs)are the most suitable alternative candidate for conventional lead perovskite solar cells.However,the efficiency and the stability are insufficient,mainly because of the poor ... Lead free tin perovskite solar cells(PKSCs)are the most suitable alternative candidate for conventional lead perovskite solar cells.However,the efficiency and the stability are insufficient,mainly because of the poor film quality and numerous defects.Here we introduce an efficient strategy based on a simple trimethylsilyl halide surface passivation to increase the film quality and reduce the defect density.At the same time,a hydrophobic protective layer on the perovskite surface is formed,which enhanced the PKSCs’stability.The efficiency of the solar cell after the passivation was enhanced from 10.05%to 12.22%with the improved open-circuit voltage from 0.57 V to 0.70 V.In addition,after 92 days of storage in N_(2) filled glovebox,the modified T-PKSCs demonstrated high stability maintaining 80%of its initial efficiency.This work provides a simple and widely used strategy to optimize the surface/interface optoelectronic properties of perovskites for giving more efficient and stable solar cells and other optoelectronic devices. 展开更多
关键词 Tin halide perovskite Trimethylsilyl halide Surface passivation STABILITY
下载PDF
Photovoltaic Properties of CdSe Quantum Dot Sensitized Inverse Opal TiO<sub>2</sub>Solar Cells: The Effect of TiCl<sub>4</sub>Post Treatment
6
作者 Motoki Hironaka Taro Toyoda +3 位作者 Kanae Hori Yuhei Ogomi shuzi hayase Qing Sheng 《Journal of Modern Physics》 2017年第4期522-530,共9页
Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. T... Recently, semiconductor quantum dot (QD) sensitized solar cells (QDSSCs) are expected to achieve higher conversion efficiency because of the large light absorption coefficient and multiple exciton generation in QDs. The morphology of TiO2 electrode is one of the most important factors in QDSSCs. Inverse opal (IO) TiO2 electrode, which has periodic mesoporous structure, is useful for QDSSCs because of better penetration of electrolyte than conventional nanoparticulate TiO2 electrode. In addition, the ordered three dimensional structure of IO-TiO2 would be better for electron transport. We have found that open circuit voltage Voc of QDSSCs with IO-TiO2 electrodes was much higher (0.2 V) than that with nanoparticulate TiO2 electrodes. But short circuit current density Jsc was lower in the case of IO-TiO2 electrodes because of the smaller surface area of IO-TiO2. In this study, for increasing surface area of IO-TiO2, we applied TiCl4 post treatment on IO-TiO2 and investigated the effect of the post treatment on photovoltaic properties of CdSe QD sensitized IO-TiO2 solar cells. It was found that Jsc could be enhanced due to TiCl4 post treatment, but decreased again for more than one cycle treatment, which indicates excess post treatment may lead to worse penetration of electrolyte. Our results indicate that the appropriate post treatment can improve the energy conversion efficiency of the QDSSCs. 展开更多
关键词 Quantum DOT Sensitized Solar Cells Inverse OPAL Structure TICL4 Post Treatment Morphology of the TiO2 Electrode
下载PDF
Unravelling the bottleneck of phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solar cells
7
作者 Ajendra Kumar Vats Pritha Roy +2 位作者 Linjun Tang shuzi hayase Shyam S.Pandey 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第7期1060-1078,共19页
Novel near-infrared sensitizers with different anchoring groups aiming toward improved stability and efficiency of dye-sensitized solar cells were synthesized. Adsorption of these dyes on the mesoporous TiO_(2) surfac... Novel near-infrared sensitizers with different anchoring groups aiming toward improved stability and efficiency of dye-sensitized solar cells were synthesized. Adsorption of these dyes on the mesoporous TiO_(2) surface revealed the dye adsorption rate of –CH=CH–COOH (SQ-139)>–CH=C(CN)COOH (SQ-140)>–PO_(3)H_(2) (SQ-143)>–CH=C(CN)PO_(3)H_(2) (SQ-148)>–CH=C(CN)PO_(3)H–C_(2)H_(5) (SQ-157)>–PO_(3)H–C_(2)H_(5) (SQ-151)> –CH=CH–COOH(–PO_(3)H_(2)) (SQ-162). The binding strength of these dyes on mesoporous TiO_(2) as investigated by dye desorption studies follows SQ-162>SQ-143>SQ-148>SQ-139≫SQ-157~SQ-151≫SQ-140 order. The acrylic acid anchoring group was demonstrated to be an optimum functional group owing to its fast dye adsorption rate and better binding strength on TiO_(2) along with good photoconversion efficiency. Results of dye binding on TiO_(2) surface demonstrated that SQ-162 bearing double anchoring groups of phosphonic and acrylic acid exhibited>550 times stronger binding as compared to dye SQ-140 having cyanoacrylic acid anchoring group. SQ-140 exhibited the best photovoltaic performance with photon harvesting mainly in the far-red to near-infrared wavelength region having short circuit current density, open-circuit voltage and fill factor of 14.28 mA·cm^(–2), 0.64 V and 0.65, respectively, giving the power conversion efficiency of 5.95%. Thus, dye SQ-162 not only solved the problem of very poor efficiency of dye bearing only phosphonic acid while maintaining the extremely high binding strength opening the path for the design and development of novel near-infrared dyes with improved efficiency and stability by further increasing the π-conjugation. 展开更多
关键词 anchoring groups adsorption behaviour dye-binding strength squaraine dyes dye-sensitized solar cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部