In this paper, the recent studies of laboratory astrophysics with strong magnetic fields in China have been reviewed.On the Shenguang-II laser facility of the National Laboratory on High-Power Lasers and Physics, a la...In this paper, the recent studies of laboratory astrophysics with strong magnetic fields in China have been reviewed.On the Shenguang-II laser facility of the National Laboratory on High-Power Lasers and Physics, a laser-driven strong magnetic field up to 200 T has been achieved. The experiment was performed to model the interaction of solar wind with dayside magnetosphere. Also the low beta plasma magnetic reconnection(MR) has been studied. Theoretically, the model has been developed to deal with the atomic structures and processes in strong magnetic field. Also the study of shock wave generation in the magnetized counter-streaming plasmas is introduced.展开更多
基金supported by National Basic Research Program of China (973 Program) under grant No.2013CBA01503the National Natural Science Foundation of China under grant No.11573040, 11503041 and 11135012supported by the Science Challenge Program
文摘In this paper, the recent studies of laboratory astrophysics with strong magnetic fields in China have been reviewed.On the Shenguang-II laser facility of the National Laboratory on High-Power Lasers and Physics, a laser-driven strong magnetic field up to 200 T has been achieved. The experiment was performed to model the interaction of solar wind with dayside magnetosphere. Also the low beta plasma magnetic reconnection(MR) has been studied. Theoretically, the model has been developed to deal with the atomic structures and processes in strong magnetic field. Also the study of shock wave generation in the magnetized counter-streaming plasmas is introduced.