This paper report paleomagnetic data from late Cretaceous diorite dykes that sub-vertically intrude granodiorites in the eastern Gangdese belt near the city of Lhasa.Our research goals are to provide further constrain...This paper report paleomagnetic data from late Cretaceous diorite dykes that sub-vertically intrude granodiorites in the eastern Gangdese belt near the city of Lhasa.Our research goals are to provide further constraints on pre-collisional structure of the southern margin of Asia and the onset of the India-Asia collision.Magnetite is identified as the main magnetic carrier in our study.The magnetite shows no evidence of metamorphism or alteration as determined from optical and scanning electron microscope observations.A strong mineral orientation is revealed by anisotropy of magnetic susceptibility analysis both for the intruded dykes and the country rocks.The authors interpret this AMS fabric to have formed during intrusion rather than deformation.Fifteen of 23 sites yield acceptable site mean characteristic remanences with dual polarities.A scatter analysis of the virtual geomagnetic poles suggests that the mean result adequately averaged paleosecular variation.The paleomagnetic pole from the Gangdese dykes yields a paleolatitude of 14.3°N±5.8°N for the southern margin of Asia near Lhasa.The paleolatitude corresponds to an in-between position of the Lhasa terrane during about 130‒60 Ma.Furthermore,the mean declination of the characteristic remanent magnetization reveals a significant counterclockwise rotation of 18°±9°for the sampling location since about 83 Ma.In the light of tectonic setting of the dykes,the strike of the southern margin of Asia near Lhasa is restored to trend approximately about 310°,which is compatible with the hypothesis that the southern margin of Eurasia had a quasi-linear structure prior to its collision with India.展开更多
Lithium-sulfur batteries(LSBs)are one of the most promising energy storage devices because of their high theoretical energy density;however,inherent issues including poor electrical conductivity and severe dissolution...Lithium-sulfur batteries(LSBs)are one of the most promising energy storage devices because of their high theoretical energy density;however,inherent issues including poor electrical conductivity and severe dissolution of S and its discharged products hinder their practical applications.MXenes have metallic conductivity,ultra-thin two-dimensional(2D)structures,rich surface functional groups,and macrostructural adjustability and have been widely used to design advanced sulfur hosts.3D network structures assembled by 2D MXene nanosheets have shown superior performance for improving reaction kinetics,accommodating and dispersing sulfur at the micro-/nanoscale,and capturing polysulfides due to their porous interconnected structure.Herein,the applications of MXene architectures related to 2D layered structures,3D multilayered structures,and 3D spherical structures as sulfur hosts are reviewed.The structure-performance relationship,challenges for current designs,and opportunities for future 3D architectures for LSBs are also analyzed.展开更多
Efficient and modular synthesis of structurally diverse 1,4-diketones from readily available building blocks represents an essential but challenging task in organic chemistry.Herein,we report a multi-component,regiose...Efficient and modular synthesis of structurally diverse 1,4-diketones from readily available building blocks represents an essential but challenging task in organic chemistry.Herein,we report a multi-component,regioselective bis-acylation of olefins by merging NHC organocatalysis and photoredox catalysis.With this protocol,a broad range of 1,4-diketones could be rapidly assembled using bench-stable feedstock materials.The robustness of this method was further evaluated by sensitivity screening,and good reproductivity was observed.Moreover,the diketone products could be readily converted into functionalized heterocycles,such as multi-substituted furan,pyrrole,and pyridazine.Mechanistic investigations shed light on the NHC and photoredox dual catalytic radical reaction mechanism.展开更多
基金financially supported by the National Science Foundation of China(92055205,41672223)the start-up funding from Sun Yat-sen University(74110-18841244).
文摘This paper report paleomagnetic data from late Cretaceous diorite dykes that sub-vertically intrude granodiorites in the eastern Gangdese belt near the city of Lhasa.Our research goals are to provide further constraints on pre-collisional structure of the southern margin of Asia and the onset of the India-Asia collision.Magnetite is identified as the main magnetic carrier in our study.The magnetite shows no evidence of metamorphism or alteration as determined from optical and scanning electron microscope observations.A strong mineral orientation is revealed by anisotropy of magnetic susceptibility analysis both for the intruded dykes and the country rocks.The authors interpret this AMS fabric to have formed during intrusion rather than deformation.Fifteen of 23 sites yield acceptable site mean characteristic remanences with dual polarities.A scatter analysis of the virtual geomagnetic poles suggests that the mean result adequately averaged paleosecular variation.The paleomagnetic pole from the Gangdese dykes yields a paleolatitude of 14.3°N±5.8°N for the southern margin of Asia near Lhasa.The paleolatitude corresponds to an in-between position of the Lhasa terrane during about 130‒60 Ma.Furthermore,the mean declination of the characteristic remanent magnetization reveals a significant counterclockwise rotation of 18°±9°for the sampling location since about 83 Ma.In the light of tectonic setting of the dykes,the strike of the southern margin of Asia near Lhasa is restored to trend approximately about 310°,which is compatible with the hypothesis that the southern margin of Eurasia had a quasi-linear structure prior to its collision with India.
基金supported by the National Natural Science Foundation of China(21805105,21975091 and 21773078)。
文摘Lithium-sulfur batteries(LSBs)are one of the most promising energy storage devices because of their high theoretical energy density;however,inherent issues including poor electrical conductivity and severe dissolution of S and its discharged products hinder their practical applications.MXenes have metallic conductivity,ultra-thin two-dimensional(2D)structures,rich surface functional groups,and macrostructural adjustability and have been widely used to design advanced sulfur hosts.3D network structures assembled by 2D MXene nanosheets have shown superior performance for improving reaction kinetics,accommodating and dispersing sulfur at the micro-/nanoscale,and capturing polysulfides due to their porous interconnected structure.Herein,the applications of MXene architectures related to 2D layered structures,3D multilayered structures,and 3D spherical structures as sulfur hosts are reviewed.The structure-performance relationship,challenges for current designs,and opportunities for future 3D architectures for LSBs are also analyzed.
基金the National Natural Science Foundation of China(NSFC,Nos.22071011,21871031,22271028 and 82073998)Longquan Talents Program,the Science&Technology Department of Sichuan Province(Nos.2021YJ0404,2022JDRC0045 and 2023NSFSC1081)the innovative project of Chengdu University is gratefully acknowledged.
文摘Efficient and modular synthesis of structurally diverse 1,4-diketones from readily available building blocks represents an essential but challenging task in organic chemistry.Herein,we report a multi-component,regioselective bis-acylation of olefins by merging NHC organocatalysis and photoredox catalysis.With this protocol,a broad range of 1,4-diketones could be rapidly assembled using bench-stable feedstock materials.The robustness of this method was further evaluated by sensitivity screening,and good reproductivity was observed.Moreover,the diketone products could be readily converted into functionalized heterocycles,such as multi-substituted furan,pyrrole,and pyridazine.Mechanistic investigations shed light on the NHC and photoredox dual catalytic radical reaction mechanism.