期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
新工科背景下应用化学综合实验课程思政育人实践
1
作者 胡思江 王红强 +4 位作者 彭继明 郑锋华 潘齐常 刘葵 李庆余 《大学化学》 CAS 2024年第2期214-220,共7页
针对新工科理念和课程思政的要求,避免专业教育和思政教育“两张皮”的问题,从教材、课程教学和平台建设等方面介绍了新工科理念和课程思政在应用化学综合实验中的有机融合实践。在前期课程教学基础和初步实践基础上,提出了建设配套教... 针对新工科理念和课程思政的要求,避免专业教育和思政教育“两张皮”的问题,从教材、课程教学和平台建设等方面介绍了新工科理念和课程思政在应用化学综合实验中的有机融合实践。在前期课程教学基础和初步实践基础上,提出了建设配套教材、发挥线上线下教学、搭建校内科研与工程实践平台、拓展校外实践基地等具体的改革路径,将课程思政全方位融入教学活动中,构建了应用化学综合实验课程思政育人新体系,助力新工科背景下新兴应用型人才培养。该实践可为其他实验课程开展新工科背景下课程思政改革提供参考。 展开更多
关键词 新工科 课程思政 应用化学综合实验 实践教学
下载PDF
Dielectric polarization in MgFe_(2)O_(4) coating and bulk doping to enhance high-voltage cycling stability of Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2) cathode material
2
作者 Xiaoqian Xu Yizhen huang +7 位作者 Dan Li Qichang Pan sijiang hu Yahao Li Hongqiang Wang Youguo huang Fenghua Zheng Qingyu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期200-211,I0007,共13页
Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_... Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_(2)O_(4) coating and Mg,Fe co-doping were constructed simultaneously by Mg,Fe surface treatment to suppress lattice oxygen evolution and P2-O2 phase transformation of P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)at deep charging.Through ex-situ X-ray diffraction(XRD)tests,we found that the Mg,Fe bulk co-doping could reduce the repulsion between transition metals and Na+/vacancies ordering,thus inhibiting the P2-O2 phase transition and significantly reducing the irreversible volume change of the material.Meanwhile,the internal electric field formed by the dielectric polarization of Mg Fe_(2)O_(4) effectively inhibits the outward migration of oxidized O^(a-)(a<2),thereby suppressing the lattice oxygen evolution at deep charging,confirmed by in situ Raman and ex situ XPS techniques.P2-Na NM@MF-3 shows enhanced high-voltage cycling performance with capacity retentions of 84.8% and 81.3%at 0.1 and 1 C after cycles.This work sheds light on regulating the surface chemistry for Na-layered oxide materials to enhance the high-voltage performance of Na-ion batteries. 展开更多
关键词 P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2) MgFe_(2)O_(4) Bulk doping Lattice oxygen evolution P2-O2 phase transformation
下载PDF
Mg,Ti-base surface integrated layer and bulk doping to suppress lattice oxygen evolution of Ni-rich cathode material at a high cut-off voltage 被引量:1
3
作者 Fan Peng Youqi Chu +7 位作者 Yu Li Qichang Pan Guangchang Yang Lixuan Zhang sijiang hu Fenghua Zheng Hongqiang Wang Qingyu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期434-444,I0012,共12页
The Nickel-rich layered cathode materials charged to 4.5 V can obtain a specific capacity of more than 200 m Ah g^(-1).However,the nickel-rich layered cathode materials suffer from the severe capacity fade during high... The Nickel-rich layered cathode materials charged to 4.5 V can obtain a specific capacity of more than 200 m Ah g^(-1).However,the nickel-rich layered cathode materials suffer from the severe capacity fade during high-voltage cycling,which is related to the phase transformation and the surface sides reactions caused by the lattice oxygen evolution.Here,the simultaneous construction of a Mg,Ti-based surface integrated layer and bulk doping through Mg,Ti surface treatment could suppress the lattice oxygen evolution of Nirich material at deep charging.More importantly,Mg and Ti are co-doped into the particles surface to form an Mg_(2)TiO_(4) and Mg_(0.5–x)Ti_(2–y)(PO_(4))_(3) outer layer with Mg and Ti vacancies.In the constructed surface integrated layer,the reverse electric field in the Mg_(2)TiO_(4) effectively suppressed the outward migration of the lattice oxygen anions,while Mg_(0.5–x)Ti_(2–y)(PO_(4))_(3) outer layer with high electronic conductivity and good lithium ion conductor could effectively maintained the stability of the reaction interface during highvoltage cycling.Meanwhile,bulk Mg and Ti co-doping can mitigate the migration of Ni ions in the bulk to keep the stability of transition metal–oxygen(M-O)bond at deep charging.As a result,the NCM@MTP cathode shows excellent long cycle stability at high-voltage charging,which keep high capacity retention of 89.3%and 84.3%at 1 C after 200 and 100 cycles under room and elevated temperature of 25 and 55°C,respectively.This work provides new insights for manipulating the surface chemistry of electrode materials to suppress the lattice oxygen evolution at high charging voltage. 展开更多
关键词 Ni-rich layered oxide Mg Ti-base surface integrated layer Bulk doping Lattice oxygen evolution
下载PDF
Recent Progress of Catalytic Cathodes for Lithium-oxygen Batteries
4
作者 Wei WANG Simin WANG +4 位作者 Longhai ZHANG sijiang hu Xuyang XIONG Tengfei ZHOU Chaofeng ZHANG 《Research and Application of Materials Science》 2022年第1期31-41,共11页
Lithium-oxygen batteries are among the most promising electrochemical energy storage systems,which have attracted significant attention in the past few years duo to its far more energy density than lithium-ion batteri... Lithium-oxygen batteries are among the most promising electrochemical energy storage systems,which have attracted significant attention in the past few years duo to its far more energy density than lithium-ion batteries.Lithium oxygen battery energy storage is a reactive storage mechanism,and the discharge and charge processes are usually called oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).Consequently,complex systems usually create complex problems,lithium oxygen batteries also face many problems,such as excessive accumulation of discharge products(Li_(2)O_(2))in the cathode pores,resulting in reduced capacity,unstable cycling performance and so on.Cathode catalyst,which could influence the kinetics of OER and ORR in lithium oxygen(Li-O_(2))battery,is one of the decisive factors to determine the electrochemical performance of the battery,so the design of cathode catalyst is vitally important.This review discusses the catalytic cathode materials,which are divided into four parts,carbon based materials,metals and metal oxides,composite materials and other materials. 展开更多
关键词 lithium oxygen battery CATHODE CATALYST energy storage
下载PDF
Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li–S batteries 被引量:3
5
作者 Peifan Wang Xin Dai +9 位作者 Peng Xu sijiang hu Xuyang Xiong Kunyang Zou Shengwu Guo Junjie Sun Chaofeng Zhang Yongning Liu Tengfei Zhou Yuanzhen Chen 《eScience》 2023年第1期89-98,共10页
A robust three-dimensional(3D)interconnected sulfur host and a polysulfide-proof interlayer are key components in high-performance Li–S batteries.Herein,cellulose-based 3D hierarchical porous carbon(HPC)and two-dimen... A robust three-dimensional(3D)interconnected sulfur host and a polysulfide-proof interlayer are key components in high-performance Li–S batteries.Herein,cellulose-based 3D hierarchical porous carbon(HPC)and two-dimensional(2D)lamellar porous carbon(LPC)are employed as the sulfur host and polysulfide-proof inter-layer,respectively,for a Li–S battery.The 3D HPC displays a cross-linked macroporous structure,which allows high sulfur loading and restriction capability and provides unobstructed electrolyte diffusion channels.With a stackable carbon sheet of 2D LPC that has a large plane view size and is ultrathin and porous,the LPC-coated separator effectively inhibits polysulfides.An optimized combination of the HPC and LPC yields an electrode structure that effectively protects the lithium anode against corrosion by polysulfides,giving the cell a high ca-pacity of 1339.4 mAh g^(-1) and high stability,with a capacity decay rate of 0.021% per cycle at 0.2C.This work provides a new understanding of biomaterials and offers a novel strategy to improve the performance of Li–S batteries for practical applications. 展开更多
关键词 Lithium-sulfur batteries Hierarchical porous carbon Lamellar porous carbon Interconnected sulfur host Polysulfide-proof interlayer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部