We conducted experiments in an artificial stream tank with wild juvenile Chinese sturgeon Acipenser sinensis captured in the Yangtze Estuary to test the null hypothesis that their feeding efficiency on Barcheek goby R...We conducted experiments in an artificial stream tank with wild juvenile Chinese sturgeon Acipenser sinensis captured in the Yangtze Estuary to test the null hypothesis that their feeding efficiency on Barcheek goby Rhinogobius giurinus was not affected by sand vs. smooth glass substrate. Gobies are among the most common prey eaten by wild juvenile A. sinensis in the estuary. Test results found neither substrate type significantly affected feeding efficiency by juveniles. Previous research found a strong innate habitat preference of A. sinensis for sand substrate. The present results indicate that the preference for sand is not related to efficiently capturing R. giurinus on sand, but is an adaptation predisposing juvenile A. sinensis to seek sandy substrate where R. giurinus and other benthic forage are the most abundant in the Yangtze Estuary.展开更多
It is a challenge in the field sampling to face conflict between the statistical requirements and the logistical constraints when explicitly estimating the macrobenthos species richness in the heterogeneous intertidal...It is a challenge in the field sampling to face conflict between the statistical requirements and the logistical constraints when explicitly estimating the macrobenthos species richness in the heterogeneous intertidal wetlands. To solve this problem, this study tried to design an optimal, efficient and practical sampling strategy by comprehensively focusing on the three main parts of the entire process(to optimize the sampling method, to determine the minimum sampling effort and to explore the proper sampling interval) in a typical intertidal wetland of the Changjiang(Yangtze) Estuary, China. Transect sampling was selected and optimized by stratification based on pronounced habitat types(tidal flat, tidal creek, salt marsh vegetation). This type of sampling is also termed within-transect stratification sampling. The optimal sampling intervals and the minimum sample effort were determined by two beneficial numerical methods: Monte Carlo simulations and accumulative species curves. The results show that the within-transect stratification sampling with typical habitat types was effective for encompassing 81% of the species, suggesting that this type of sampling design can largely reduce the sampling effort and labor. The optimal sampling intervals and minimum sampling efforts for three habitats were determined: sampling effort must exceed 1.8 m^2 by 10 m intervals in the salt marsh vegetation, 2 m^2 by 10 m intervals in the tidal flat, and 3 m^2 by 1 m intervals in the tidal creek habitat. It was suggested that the differences were influenced by the mobility range of the dominant species and the habitats' physical differences(e.g., tidal water, substrate, vegetation cover). The optimized sampling strategy could provide good precision in the richness estimation of macrobenthos and balance the sampling effort. Moreover, the conclusions presented here provide a reference for recommendations to consider before macrobenthic surveys take place in estuarine wetlands. The sampling strategy, focusing on the three key parts of the sampling design, had a good operational effect and could be used as a guide for field sampling for habitat management or ecosystem assessment.展开更多
Background The provision of habitat for fishery species in estuaries is highly valued and represents one of the most challenging ecosystem service values to quantify.However,quantifying this value is challenging due t...Background The provision of habitat for fishery species in estuaries is highly valued and represents one of the most challenging ecosystem service values to quantify.However,quantifying this value is challenging due to complex relationships between habitat change,ecological processes,and environmental variations.This study aims to estimate estuarine habitat degradation and its impact on the reproduction process of the crab Eriocheir sinensis by characterizing the changes in breeding habitat and investigating relationships between the species and its habitat in the Yang-tze River Estuary.Methods A species distribution model recently developed was applied to estimate the extent and quality of breeding habitat changes from 2014-2021.The intrinsic(physiological)and external(structural)reproductive attributes of the breeding process were measured to assess the effects of habitat change.The relationships among habitat change,reproductive attributes and environmental factors were analyzed to understand the underlying driving forces of habitat degradation for breeding process by multivariate statistical analysis.Results About 34.24%of essential habitat was lost,mainly in highly suitable areas due to reclamation and waterway construction.Habitat degradation significantly affects female distribution and their reproductive processes,particularly gonad development during the pre-reproductive period and fecundity during the reproductive period,without altering population structure.These results indicated that the main ecological function served by the highly suitable breeding ground was the provision for development of gonad and improvement of fecundity.Increases of salinity and turbidity,caused by hydrodynamic changes from large-scale waterway construction,were identified as the environmental determinants contributing to cumulative habitat degradation.These influences ultimately led to a decrease in the fecundity of E.sinensis.Conclusions Our research sheds light on the quantification of habitat degradation in the Yangtze River Estuary and its implications for the reproduction process of E.sinensis,which can serve as a foundation for assessing and quantifying the ecosystem service values provided by these breeding grounds.This information is valuable for policymakers and resource managers in making informed decisions regarding habitat conservation and the sustainable utilization of fishery resources.展开更多
Fundamental knowledge of structure-activity correlations for heterogeneous single-atom catalysts(SACs)is essential in guiding catalytic design.While linear scaling relations are powerful for predicting the performance...Fundamental knowledge of structure-activity correlations for heterogeneous single-atom catalysts(SACs)is essential in guiding catalytic design.While linear scaling relations are powerful for predicting the performance of traditionalmetal catalysts,they appear to fail with the involvement of SACs.Comparing the catalytic CO oxidation activity of different atomically dispersed metals(3d,4d,and 5d)in conjunction with computational modeling enabled us to establish multiple scaling relations between the activity and simply calculated descriptors.展开更多
The Yangtze River is the mother river of China.To promote the aquatic ecosystem protection of the great river,the Project of Yangtze Fisheries Resources and Environment Investigation(2017-2021)supported by the Ministr...The Yangtze River is the mother river of China.To promote the aquatic ecosystem protection of the great river,the Project of Yangtze Fisheries Resources and Environment Investigation(2017-2021)supported by the Ministry of Agriculture and Rural Affairs,P.R.China carried out by 24 institutes and universities that located in the Yangtze River basin surveys the status of(1)fish species composition and spatial distribution,(2)current fish abundance,(3)endangered fishes,(4)Yangtze finless porpoise,(5)aquatic eco-environments,(6)water-level fluctuation areas,(7)capture fisheries and recreational fisheries of the Yangtze River mainstream and 10 of its main tributaries,including Yalong River,Heng River,Min River(including Dadu River),Chishui River,Tuo River,Jialing River,Wu River,Han River,Dongting Lake and Poyang Lake.The results showed that there were 443 fish species(belonging to 163 genus,37 families,and 18 orders)before 2017,but only 323 fish species(including 15 new recorded exotic species)were recorded in the project of 2017-2021.Among them,Cyprinus carpio,Carassius auratus,Hypophthalmichthys molitrix,Pelteobagrus fulvidraco,Coilia brachygnathus,Silurus asotus,Saurogobio dabryi,Ctenopharyngodon idellus,Pelteobagrus nitidus,Hemiculter leucisculus,Siniperca chuatsi,Coreius heterodon,Culter alburnus,Parabramis pekinensis,and Aristichthys nobilis were the dominant species across the whole Yangtze River system.It is estimated that there were 886 million individuals weighing 124.8 million kg,merely equivalent to 27.3%of the resources in 1950s,30.9%of the resources in 1960s,or 58.7%of the resources in 1980s.In the new list of protected fishes that recorded in the Yangtze River system,only 15 of 29 were collected in this project of 2017-2021.Psephurus gladius has been affirmed to be Extinct by International Union for Conservation of Nature(IUCN).The wild individuals of Tenualosa reevesii and Luciobrama macrocephalus have disappeared for many years and maybe have been extinct already.Acipenser dabryanus has been affirmed to be Extinct in the Wild by IUCN.The natural propagations of A.sinensis,Myxocyprinus asiaticus and Trachidermus fasciatus have been interrupted for many years.The populations of Yangtze finless porpoise in the Yangtze River mainstream,Dongting Lake and Poyang Lake have steadily rising sizes and expanding distributions in 2017-2021.Parts of them migrate from one region to another with the seasons,which would result in the fluctuation of Yangtze finless porpoise population within some regions.The conventional indicators of water quality in the Yangtze River system were good and conformed to the water quality criteria of fishery in 2017-2021.In the last 40 years,the maximum surface water area in the Yangtze River basin extended to approximately 63,360 km2,the minimum surface water area covered approximately 26,396 km2,and the seasonal water-level fluctuation areas occupied approximately 36,964 km2.Compared with 1984-2000 period,the 2001-2020 period witnessed an overall decreasing trend in the frequency of surface water occurrence within about 25,869 km2 of aquatic areas.From 1984 to 2000 period to 2001-2020 period,permanent surface water has decreased by nearly 8,750 km2.In 2017,the fishermen were mainly 40-60 years old and their educational levels were mainly lower than junior high school.In 2017,most anglers were older than 40 and used hand rod and/or sea rod.Their average catch of each time was mainly less than 1 kg.Results suggested that the fishing ban in key waters of the Yangtze River basin is not only an ecological project of aquatic ecosystem conservation,but also a livelihood project for the fisherman to embrace industrial transformation and improve their living conditions.After the implementation of the fishing ban,the fisheries resources would gradually recover,and the Yangtze finless porpoise population size would also see a steady increase.However,the endangered species would remain threatened for a long time.The degraded waterbodies and water-level fluctuation areas would be the key restrictive factors for future aquatic ecosystem recovery in the Yangtze River basin.Since this survey was carried out before the fishing ban,the current results could provide a baseline for future evaluation of the effect of the Yangtze River fishing ban.展开更多
文摘We conducted experiments in an artificial stream tank with wild juvenile Chinese sturgeon Acipenser sinensis captured in the Yangtze Estuary to test the null hypothesis that their feeding efficiency on Barcheek goby Rhinogobius giurinus was not affected by sand vs. smooth glass substrate. Gobies are among the most common prey eaten by wild juvenile A. sinensis in the estuary. Test results found neither substrate type significantly affected feeding efficiency by juveniles. Previous research found a strong innate habitat preference of A. sinensis for sand substrate. The present results indicate that the preference for sand is not related to efficiently capturing R. giurinus on sand, but is an adaptation predisposing juvenile A. sinensis to seek sandy substrate where R. giurinus and other benthic forage are the most abundant in the Yangtze Estuary.
基金The Special Scientific Research Funds for Central Non-profit Institutes(East China Sea Fisheries Research Institute)under contract No.2016T08the National Natural Science Foundation of China under contract No.31400410
文摘It is a challenge in the field sampling to face conflict between the statistical requirements and the logistical constraints when explicitly estimating the macrobenthos species richness in the heterogeneous intertidal wetlands. To solve this problem, this study tried to design an optimal, efficient and practical sampling strategy by comprehensively focusing on the three main parts of the entire process(to optimize the sampling method, to determine the minimum sampling effort and to explore the proper sampling interval) in a typical intertidal wetland of the Changjiang(Yangtze) Estuary, China. Transect sampling was selected and optimized by stratification based on pronounced habitat types(tidal flat, tidal creek, salt marsh vegetation). This type of sampling is also termed within-transect stratification sampling. The optimal sampling intervals and the minimum sample effort were determined by two beneficial numerical methods: Monte Carlo simulations and accumulative species curves. The results show that the within-transect stratification sampling with typical habitat types was effective for encompassing 81% of the species, suggesting that this type of sampling design can largely reduce the sampling effort and labor. The optimal sampling intervals and minimum sampling efforts for three habitats were determined: sampling effort must exceed 1.8 m^2 by 10 m intervals in the salt marsh vegetation, 2 m^2 by 10 m intervals in the tidal flat, and 3 m^2 by 1 m intervals in the tidal creek habitat. It was suggested that the differences were influenced by the mobility range of the dominant species and the habitats' physical differences(e.g., tidal water, substrate, vegetation cover). The optimized sampling strategy could provide good precision in the richness estimation of macrobenthos and balance the sampling effort. Moreover, the conclusions presented here provide a reference for recommendations to consider before macrobenthic surveys take place in estuarine wetlands. The sampling strategy, focusing on the three key parts of the sampling design, had a good operational effect and could be used as a guide for field sampling for habitat management or ecosystem assessment.
基金supported by grants from the National Key R&D Program of China(2019YFD0901202)the National Natural Science Foundation of China(grant Nos.32071584,32072982&32271658)the Program of Shanghai Academic Research Leader(21XD1405000).
文摘Background The provision of habitat for fishery species in estuaries is highly valued and represents one of the most challenging ecosystem service values to quantify.However,quantifying this value is challenging due to complex relationships between habitat change,ecological processes,and environmental variations.This study aims to estimate estuarine habitat degradation and its impact on the reproduction process of the crab Eriocheir sinensis by characterizing the changes in breeding habitat and investigating relationships between the species and its habitat in the Yang-tze River Estuary.Methods A species distribution model recently developed was applied to estimate the extent and quality of breeding habitat changes from 2014-2021.The intrinsic(physiological)and external(structural)reproductive attributes of the breeding process were measured to assess the effects of habitat change.The relationships among habitat change,reproductive attributes and environmental factors were analyzed to understand the underlying driving forces of habitat degradation for breeding process by multivariate statistical analysis.Results About 34.24%of essential habitat was lost,mainly in highly suitable areas due to reclamation and waterway construction.Habitat degradation significantly affects female distribution and their reproductive processes,particularly gonad development during the pre-reproductive period and fecundity during the reproductive period,without altering population structure.These results indicated that the main ecological function served by the highly suitable breeding ground was the provision for development of gonad and improvement of fecundity.Increases of salinity and turbidity,caused by hydrodynamic changes from large-scale waterway construction,were identified as the environmental determinants contributing to cumulative habitat degradation.These influences ultimately led to a decrease in the fecundity of E.sinensis.Conclusions Our research sheds light on the quantification of habitat degradation in the Yangtze River Estuary and its implications for the reproduction process of E.sinensis,which can serve as a foundation for assessing and quantifying the ecosystem service values provided by these breeding grounds.This information is valuable for policymakers and resource managers in making informed decisions regarding habitat conservation and the sustainable utilization of fishery resources.
基金the National University of Singapore(NUS)Flagship Green Energy Program(grant nos.R-279-000-553-646 and R-279-000-553-731)and the National Natural Science Foundation of China(grant nos.92061109,22033005,and 22038002)for their financial support.N.Y.and J.L.thank the Asian Universities Alliance(AUA)Scholars Award for the sponsorship.Q.Y.acknowledges the hospitality of NUS and Tsinghua University during her sabbatical visit.This work was partially sponsored by the Guangdong Provincial Key Laboratory of Catalysis(grant no.2020B121201002)and the Natural Science Basic Research Program of Shaanxi(2021JCW-20 and S2020-JC-WT-0001).
文摘Fundamental knowledge of structure-activity correlations for heterogeneous single-atom catalysts(SACs)is essential in guiding catalytic design.While linear scaling relations are powerful for predicting the performance of traditionalmetal catalysts,they appear to fail with the involvement of SACs.Comparing the catalytic CO oxidation activity of different atomically dispersed metals(3d,4d,and 5d)in conjunction with computational modeling enabled us to establish multiple scaling relations between the activity and simply calculated descriptors.
文摘The Yangtze River is the mother river of China.To promote the aquatic ecosystem protection of the great river,the Project of Yangtze Fisheries Resources and Environment Investigation(2017-2021)supported by the Ministry of Agriculture and Rural Affairs,P.R.China carried out by 24 institutes and universities that located in the Yangtze River basin surveys the status of(1)fish species composition and spatial distribution,(2)current fish abundance,(3)endangered fishes,(4)Yangtze finless porpoise,(5)aquatic eco-environments,(6)water-level fluctuation areas,(7)capture fisheries and recreational fisheries of the Yangtze River mainstream and 10 of its main tributaries,including Yalong River,Heng River,Min River(including Dadu River),Chishui River,Tuo River,Jialing River,Wu River,Han River,Dongting Lake and Poyang Lake.The results showed that there were 443 fish species(belonging to 163 genus,37 families,and 18 orders)before 2017,but only 323 fish species(including 15 new recorded exotic species)were recorded in the project of 2017-2021.Among them,Cyprinus carpio,Carassius auratus,Hypophthalmichthys molitrix,Pelteobagrus fulvidraco,Coilia brachygnathus,Silurus asotus,Saurogobio dabryi,Ctenopharyngodon idellus,Pelteobagrus nitidus,Hemiculter leucisculus,Siniperca chuatsi,Coreius heterodon,Culter alburnus,Parabramis pekinensis,and Aristichthys nobilis were the dominant species across the whole Yangtze River system.It is estimated that there were 886 million individuals weighing 124.8 million kg,merely equivalent to 27.3%of the resources in 1950s,30.9%of the resources in 1960s,or 58.7%of the resources in 1980s.In the new list of protected fishes that recorded in the Yangtze River system,only 15 of 29 were collected in this project of 2017-2021.Psephurus gladius has been affirmed to be Extinct by International Union for Conservation of Nature(IUCN).The wild individuals of Tenualosa reevesii and Luciobrama macrocephalus have disappeared for many years and maybe have been extinct already.Acipenser dabryanus has been affirmed to be Extinct in the Wild by IUCN.The natural propagations of A.sinensis,Myxocyprinus asiaticus and Trachidermus fasciatus have been interrupted for many years.The populations of Yangtze finless porpoise in the Yangtze River mainstream,Dongting Lake and Poyang Lake have steadily rising sizes and expanding distributions in 2017-2021.Parts of them migrate from one region to another with the seasons,which would result in the fluctuation of Yangtze finless porpoise population within some regions.The conventional indicators of water quality in the Yangtze River system were good and conformed to the water quality criteria of fishery in 2017-2021.In the last 40 years,the maximum surface water area in the Yangtze River basin extended to approximately 63,360 km2,the minimum surface water area covered approximately 26,396 km2,and the seasonal water-level fluctuation areas occupied approximately 36,964 km2.Compared with 1984-2000 period,the 2001-2020 period witnessed an overall decreasing trend in the frequency of surface water occurrence within about 25,869 km2 of aquatic areas.From 1984 to 2000 period to 2001-2020 period,permanent surface water has decreased by nearly 8,750 km2.In 2017,the fishermen were mainly 40-60 years old and their educational levels were mainly lower than junior high school.In 2017,most anglers were older than 40 and used hand rod and/or sea rod.Their average catch of each time was mainly less than 1 kg.Results suggested that the fishing ban in key waters of the Yangtze River basin is not only an ecological project of aquatic ecosystem conservation,but also a livelihood project for the fisherman to embrace industrial transformation and improve their living conditions.After the implementation of the fishing ban,the fisheries resources would gradually recover,and the Yangtze finless porpoise population size would also see a steady increase.However,the endangered species would remain threatened for a long time.The degraded waterbodies and water-level fluctuation areas would be the key restrictive factors for future aquatic ecosystem recovery in the Yangtze River basin.Since this survey was carried out before the fishing ban,the current results could provide a baseline for future evaluation of the effect of the Yangtze River fishing ban.