Silicon Hall-effect sensors have been widely used in industry and research fields due to their straightforward fabrication process and CMOS compatibility.However,as their material property limitations,technicians usua...Silicon Hall-effect sensors have been widely used in industry and research fields due to their straightforward fabrication process and CMOS compatibility.However,as their material property limitations,technicians usually implement complex CMOS circuits to improve the sensors’performance including temperature drift and offset compensation for fitting tough situation,but it is no doubt that it increases the design complexity and the sensor area.Gallium arsenide(GaAs)is a superior material of Hall-effect device because of its large mobility and stable temperature characteristics.Concerning there is no specified modelling of GaAs Hall-effect device,this paper investigated its modelling by using finite element method(FEM)software Silvaco TCAD®to help and guide GaAs Hall-effect device fabrication.The modeled sensor has been fabricated and its experimental results are in agreement with the simulation results.Comparing to our previous silicon Hall-effect sensor,the GaAs Hall-effect sensor demonstrates potential and reliable benchmark for the future Hall magnetic sensor developments.展开更多
基金the National Natural Science Foundation of China(NSFC)under Grant 61771111Sichuan Provincial Science and Technology Important Projects under Grant 22ZDYF2805+1 种基金supported by the Open Foundation of the State Key Laboratory of Electronic Thin Films and Integrated Devices under Grant KFJJ202006,and supported by Intelligent Terminal Key Laboratory of Sichuan Province under Grant SCITLAB-1001the National Natural Science Foundation of China under Grant 62090012.
文摘Silicon Hall-effect sensors have been widely used in industry and research fields due to their straightforward fabrication process and CMOS compatibility.However,as their material property limitations,technicians usually implement complex CMOS circuits to improve the sensors’performance including temperature drift and offset compensation for fitting tough situation,but it is no doubt that it increases the design complexity and the sensor area.Gallium arsenide(GaAs)is a superior material of Hall-effect device because of its large mobility and stable temperature characteristics.Concerning there is no specified modelling of GaAs Hall-effect device,this paper investigated its modelling by using finite element method(FEM)software Silvaco TCAD®to help and guide GaAs Hall-effect device fabrication.The modeled sensor has been fabricated and its experimental results are in agreement with the simulation results.Comparing to our previous silicon Hall-effect sensor,the GaAs Hall-effect sensor demonstrates potential and reliable benchmark for the future Hall magnetic sensor developments.