Over the last three decades,flexibility and controllability considerations for heat exchanger networks(HENs)have received great attention,respectively.However,they should be simultaneously incorporated in HEN synthesi...Over the last three decades,flexibility and controllability considerations for heat exchanger networks(HENs)have received great attention,respectively.However,they should be simultaneously incorporated in HEN synthesis to allow the economic performance to be achievable in a practical operating environment.This paper proposes a method for simultaneous synthesis of flexible and controllable HEN by considering their coupling.The key idea is to add the bypasses with optimized initial fractions and positions to explore such coupling,and consequently enabling HENs to be operated successfully over a range of disturbance variations.These are implemented by identifying and quantifying disturbance propagations,and then examining the sensitivity of bypasses to the entire HEN.In this way,the superstructurebased mixed integer non-linear programming(MINLP)with objective function of minimizing the total annual cost is formulated.A case study is used to demonstrate the application of the proposed method.Quantitative measures and dynamic simulation show the ability to provide the satisfactory flexibility and controllability of the obtained HEN.展开更多
Because of its paramount importance in the successful industrial control strategy of a given heat exchanger network(HEN),the control structure designs for providing appropriate manipulated variable(MV)and controlled v...Because of its paramount importance in the successful industrial control strategy of a given heat exchanger network(HEN),the control structure designs for providing appropriate manipulated variable(MV)and controlled variable pairings have received considerable attention.However,quite frequently HENs with such control structures face the problem of hard constraints,typically holding the HENs at less controlled operating space.So both the MV pairings and the above control pairings should be considered to design a control structure.This paper investigates the systematic incorporation of the two pairings,and presents a methodology for designing such two-tier control structure.This is developed based on the sequential strategy,coupling an indirect-tier with direct-tier control structure design,wherein the intention is realized in the former stage and the latter is implemented for further optimization.The MV identification and pairing are achieved through variations in heat load of heat exchangers to design the indirect-tier control structure.Then the direct-tier control structure is followed the relative gain array pairing rules.With the proposed methodology,on the one hand,it generates an explicit connection between the MV pairings and the HEN configuration,and the quantitative interaction measure is improved to avoid the multiple solutions to break the relationship among all the control pairings into individuals;on the other hand,a two-tier control structure reveals control potentials and control system design requirements,this may avoid complex and economically unfavourable control and HEN structures.The application of proposed framework is illustrated with two cases involving the dynamic simulation analysis,the quantitative assessment and the random test.展开更多
基金Supported by the National Natural Science Foundation of China(21576036,21776035)
文摘Over the last three decades,flexibility and controllability considerations for heat exchanger networks(HENs)have received great attention,respectively.However,they should be simultaneously incorporated in HEN synthesis to allow the economic performance to be achievable in a practical operating environment.This paper proposes a method for simultaneous synthesis of flexible and controllable HEN by considering their coupling.The key idea is to add the bypasses with optimized initial fractions and positions to explore such coupling,and consequently enabling HENs to be operated successfully over a range of disturbance variations.These are implemented by identifying and quantifying disturbance propagations,and then examining the sensitivity of bypasses to the entire HEN.In this way,the superstructurebased mixed integer non-linear programming(MINLP)with objective function of minimizing the total annual cost is formulated.A case study is used to demonstrate the application of the proposed method.Quantitative measures and dynamic simulation show the ability to provide the satisfactory flexibility and controllability of the obtained HEN.
基金financial support from Jiangsu Collaborative Innovation Center for Cultural Creativity (XYN1911)the National Natural Science Foundation of China (22008023+1 种基金21776035)Natural Science Foundation of Jiangsu Education Department (20KJB510041)
文摘Because of its paramount importance in the successful industrial control strategy of a given heat exchanger network(HEN),the control structure designs for providing appropriate manipulated variable(MV)and controlled variable pairings have received considerable attention.However,quite frequently HENs with such control structures face the problem of hard constraints,typically holding the HENs at less controlled operating space.So both the MV pairings and the above control pairings should be considered to design a control structure.This paper investigates the systematic incorporation of the two pairings,and presents a methodology for designing such two-tier control structure.This is developed based on the sequential strategy,coupling an indirect-tier with direct-tier control structure design,wherein the intention is realized in the former stage and the latter is implemented for further optimization.The MV identification and pairing are achieved through variations in heat load of heat exchangers to design the indirect-tier control structure.Then the direct-tier control structure is followed the relative gain array pairing rules.With the proposed methodology,on the one hand,it generates an explicit connection between the MV pairings and the HEN configuration,and the quantitative interaction measure is improved to avoid the multiple solutions to break the relationship among all the control pairings into individuals;on the other hand,a two-tier control structure reveals control potentials and control system design requirements,this may avoid complex and economically unfavourable control and HEN structures.The application of proposed framework is illustrated with two cases involving the dynamic simulation analysis,the quantitative assessment and the random test.