Solar-driven hydrogel evaporator used for water purification demonstrates great potential in seawater desalination and domestic sewage treatment.However,much uncertainty still exists about the most efficient design to...Solar-driven hydrogel evaporator used for water purification demonstrates great potential in seawater desalination and domestic sewage treatment.However,much uncertainty still exists about the most efficient design to obtain cost-effective drinkable water.In this paper,a natural rich biomass Nicandra physalodes(Linn.)Gaertn.polysaccharide was introduced into the polyvinyl alcohol network to control the water distribution during evaporation and build a low-cost hybrid hydrogel solar evaporator with a total material cost of$7.95 m^(−2).The mixed evaporator works stably in a long-span acid–base range(pH 1–14)and salinity range(0–320 g kg^(−1)).Its daily water purification capacity can reach 24.4 kg m^(−2)with a water purification capacity of 3.51 kg m^(−2)h^(−1)under sunlight.This paper provides a new possibility for a highly efficient and cost-effective water desalination system with guaranteed water quality by focusing on the dynamic regulation of water molecules at the evaporation interface.展开更多
The solar-driven interfacial evaporation(SIE)technology shows great prospects in seawater desalination and sewage treatment,but it is unable to obtain highly efficient and high-quality clean nontoxic water at low cost...The solar-driven interfacial evaporation(SIE)technology shows great prospects in seawater desalination and sewage treatment,but it is unable to obtain highly efficient and high-quality clean nontoxic water at low cost.Here,a novel biodegradable hydrogel-based solar evaporator(BBH-L)with a bionic coral structure taking Chinese ink as the solar absorber was developed.This evaporator consists of chitosan/polyvinyl alcohol hydrogel and a loofah substrate.The average evaporation rate and efficiency of BBH-L reach 4.37 kg/(m^(2)·h)and 98.2%,respectively,under one sun illumination(1 kW/m^(2)),which are attributed to its excellent thermal localization and water transporting abilities.Meanwhile,high salt resistance enables BBH-L to achieve efficient desalination and purification of other unconventional water.Heavy metal ions in seawater can be effectively removed by chelation and forming hydrogen bonds in hydrogels.This study is anticipated to provide new possibilities to enhance evaporation performance and reduce the costs of water treatment systems.展开更多
基金support of Chengdu University of Technology(10912-2019KYQD-07545)Sichuan Ministry of Science,Technology Project(22ZDYF2878).
文摘Solar-driven hydrogel evaporator used for water purification demonstrates great potential in seawater desalination and domestic sewage treatment.However,much uncertainty still exists about the most efficient design to obtain cost-effective drinkable water.In this paper,a natural rich biomass Nicandra physalodes(Linn.)Gaertn.polysaccharide was introduced into the polyvinyl alcohol network to control the water distribution during evaporation and build a low-cost hybrid hydrogel solar evaporator with a total material cost of$7.95 m^(−2).The mixed evaporator works stably in a long-span acid–base range(pH 1–14)and salinity range(0–320 g kg^(−1)).Its daily water purification capacity can reach 24.4 kg m^(−2)with a water purification capacity of 3.51 kg m^(−2)h^(−1)under sunlight.This paper provides a new possibility for a highly efficient and cost-effective water desalination system with guaranteed water quality by focusing on the dynamic regulation of water molecules at the evaporation interface.
基金The authors would like to acknowledge the financial support by Sichuan Science and Technology Program(No.2022YFG0306)The authors would like to acknowledge the financial support from the Natural Science Foundation of Sichuan Province(No.2022NSFSC1274)+1 种基金The authors would like to acknowledge the Scientific and Technological Innovation Project of Carbon Emission Peak and Carbon Neutrality of Jiangsu Province(No.BE2022028-4)The authors would like to acknowledge the technical support of Ceshigo Research Service Agency(www.ceshigo.com).
文摘The solar-driven interfacial evaporation(SIE)technology shows great prospects in seawater desalination and sewage treatment,but it is unable to obtain highly efficient and high-quality clean nontoxic water at low cost.Here,a novel biodegradable hydrogel-based solar evaporator(BBH-L)with a bionic coral structure taking Chinese ink as the solar absorber was developed.This evaporator consists of chitosan/polyvinyl alcohol hydrogel and a loofah substrate.The average evaporation rate and efficiency of BBH-L reach 4.37 kg/(m^(2)·h)and 98.2%,respectively,under one sun illumination(1 kW/m^(2)),which are attributed to its excellent thermal localization and water transporting abilities.Meanwhile,high salt resistance enables BBH-L to achieve efficient desalination and purification of other unconventional water.Heavy metal ions in seawater can be effectively removed by chelation and forming hydrogen bonds in hydrogels.This study is anticipated to provide new possibilities to enhance evaporation performance and reduce the costs of water treatment systems.