Increasingly higher hard coal production capacity in Upper Silesian Coal Basin(Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas.An increase...Increasingly higher hard coal production capacity in Upper Silesian Coal Basin(Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas.An increase of methane content in the exploited seams and in the surrounding strata, associated with increasing depth of mining, results in higher methane emission into the longwall areas from exploited seams and degassing seams in the mining-induced de-stressed zone. Operational experience gained by the collieries confirms that reducing methane release during longwall operations often requires decreasing operating speed of a shearer in a shift. The paper presents an analysis of the parameters and factors,which have critical influence on the formation of methane hazard in longwall areas with high production capacity.展开更多
Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capaci...Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.展开更多
文摘Increasingly higher hard coal production capacity in Upper Silesian Coal Basin(Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas.An increase of methane content in the exploited seams and in the surrounding strata, associated with increasing depth of mining, results in higher methane emission into the longwall areas from exploited seams and degassing seams in the mining-induced de-stressed zone. Operational experience gained by the collieries confirms that reducing methane release during longwall operations often requires decreasing operating speed of a shearer in a shift. The paper presents an analysis of the parameters and factors,which have critical influence on the formation of methane hazard in longwall areas with high production capacity.
文摘Methods of exploitation drainage, which is presently applied in polish hard coal mines in Upper Silesian Coal Basin(Poland), are not effective enough, high risk of methane hazard can be observed, and production capacity of the mining plant is not fully used. Methane hazard, which may occur during planned coal exploitation, is presented in this paper. Following parameters are taken into consideration in the forecasts: coal extraction parameters, geological and mining conditions, deposit's methane saturation degree and impact of coal exploitation on the degasification coefficient of the seams, which are under the influence of relaxation zone. This paper presents the results of the analysis aiming to verify applicability of drainage ahead of mining of the coal seams by using surface directional wells. Based on the collected data(coal seams' structural maps, profiles of the exploratory wells, geological cross-sections), the lab tests of drilling cores and direct wells' tests, static model of the deposit was constructed and suitable grid of directional wells from the surface was designed. Comparison of forecasted methane emission volume between the two methods is investigated. The results indicated the necessity of performing appropriate deposit's stimulations in order to increase effectiveness of drainage ahead of mining.