Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure...Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure.展开更多
The improved line sampling (LS) technique, an effective numerical simulation method, is employed to analyze the probabilistic characteristics and reliability sensitivity of flutter with random structural parameter i...The improved line sampling (LS) technique, an effective numerical simulation method, is employed to analyze the probabilistic characteristics and reliability sensitivity of flutter with random structural parameter in transonic flow. The improved LS technique is a novel methodology for reliability and sensitivity analysis of high dimensionality and low probability problem with implicit limit state function, and it does not require any approximating surrogate of the implicit limit state equation. The improved LS is used to estimate the flutter reliability and the sensitivity of a two-dimensional wing, in which some structural properties, such as frequency, parameters of gravity center and mass ratio, are considered as random variables. Computational fluid dynamics (CFD) based unsteady aerodynamic reduced order model (ROM) method is used to construct the aerodynamic state equations. Coupling structural state equations with aerodynamic state equations, the safety margin of flutter is founded by using the critical velocity of flutter. The results show that the improved LS technique can effectively decrease the computational cost in the random uncertainty analysis of flutter. The reliability sensitivity, defined by the partial derivative of the failure probability with respect to the distribution parameter of random variable, can help to identify the important parameters and guide the structural optimization design.展开更多
For the stochastic structure with stochastic excitation, an advanced stratified line sampling (SLS) method is presented to obtain the cumulative distribution function (CDF) of the structural response and its sensitivi...For the stochastic structure with stochastic excitation, an advanced stratified line sampling (SLS) method is presented to obtain the cumulative distribution function (CDF) of the structural response and its sensitivity. The advanced stratified line sampling method introduces a set of middle failure subsets firstly. And for each subset, the conventional line sampling can be used to obtain the corresponding value of the response's CDF. At the same time, the sensitivity estimations of each failure subset can also be computed by modifying the important direction and corresponding reliability coefficients. The properties of CDF sensitivity are proved while the performance function is linear with normal random variables. After two simple examples are used to demonstrate the properties of CDF sensitivity and the feasibility of the presented method, the method employed to analyze the CDF and corresponding sensitivity of root bending moment (RBM) responses for the stochastic BAH is wing with gust excitation to a square-edged gust and to a Dryden gust. The results show that the parameters of the second and the fifth order modals exert more influence on the CDF of response than the other ones, and the presented SLS method can more significantly reduce the computational cost compared with Monte Carlo simulation (MCS).展开更多
基金National Natural Science Foundation of China (10572117,10802063,50875213)Aeronautical Science Foundation of China (2007ZA53012)+1 种基金New Century Program For Excellent Talents of Ministry of Education of China (NCET-05-0868)National High-tech Research and Development Program (2007AA04Z401)
文摘Combining the advantages of the stratified sampling and the importance sampling, a stratified importance sampling method (SISM) is presented to analyze the reliability sensitivity for structure with multiple failure modes. In the presented method, the variable space is divided into several disjoint subspace by n-dimensional coordinate planes at the mean point of the random vec- tor, and the importance sampling functions in the subspaces are constructed by keeping the sampling center at the mean point and augmenting the standard deviation by a factor of 2. The sample size generated from the importance sampling function in each subspace is determined by the contribution of the subspace to the reliability sensitivity, which can be estimated by iterative simulation in the sampling process. The formulae of the reliability sensitivity estimation, the variance and the coefficient of variation are derived for the presented SISM. Comparing with the Monte Carlo method, the stratified sampling method and the importance sampling method, the presented SISM has wider applicability and higher calculation efficiency, which is demonstrated by numerical examples. Finally, the reliability sensitivity analysis of flap structure is illustrated that the SISM can be applied to engineering structure.
基金Foundation items: National Natural Science Foundation of China (NSFC 10572117, 10802063, 50875213) National High-tech Research and Development Program (2007AA04Z401)+2 种基金 Aeronautical Science Foundation of China (2007ZA53012) New Century Program For Excellent Talents of Ministry of Education of China (NCET-05-0868) Ph.D. Program Foundation of Northwestern Polytechnical University (CX200801).
文摘The improved line sampling (LS) technique, an effective numerical simulation method, is employed to analyze the probabilistic characteristics and reliability sensitivity of flutter with random structural parameter in transonic flow. The improved LS technique is a novel methodology for reliability and sensitivity analysis of high dimensionality and low probability problem with implicit limit state function, and it does not require any approximating surrogate of the implicit limit state equation. The improved LS is used to estimate the flutter reliability and the sensitivity of a two-dimensional wing, in which some structural properties, such as frequency, parameters of gravity center and mass ratio, are considered as random variables. Computational fluid dynamics (CFD) based unsteady aerodynamic reduced order model (ROM) method is used to construct the aerodynamic state equations. Coupling structural state equations with aerodynamic state equations, the safety margin of flutter is founded by using the critical velocity of flutter. The results show that the improved LS technique can effectively decrease the computational cost in the random uncertainty analysis of flutter. The reliability sensitivity, defined by the partial derivative of the failure probability with respect to the distribution parameter of random variable, can help to identify the important parameters and guide the structural optimization design.
基金the National Nature Science Foundation of China (Grant No. 51175425)the Aviation Science Foundation (Grant No. 2011ZA53015)+1 种基金the Aerospace Science and Technology Innovative Foundation (Grant No. 2011200093)the Nature Science Basic Research Fund of Shaanxi Province (Grant No. 2012JQ1015)
文摘For the stochastic structure with stochastic excitation, an advanced stratified line sampling (SLS) method is presented to obtain the cumulative distribution function (CDF) of the structural response and its sensitivity. The advanced stratified line sampling method introduces a set of middle failure subsets firstly. And for each subset, the conventional line sampling can be used to obtain the corresponding value of the response's CDF. At the same time, the sensitivity estimations of each failure subset can also be computed by modifying the important direction and corresponding reliability coefficients. The properties of CDF sensitivity are proved while the performance function is linear with normal random variables. After two simple examples are used to demonstrate the properties of CDF sensitivity and the feasibility of the presented method, the method employed to analyze the CDF and corresponding sensitivity of root bending moment (RBM) responses for the stochastic BAH is wing with gust excitation to a square-edged gust and to a Dryden gust. The results show that the parameters of the second and the fifth order modals exert more influence on the CDF of response than the other ones, and the presented SLS method can more significantly reduce the computational cost compared with Monte Carlo simulation (MCS).