A facile hydrothermal method was developed for the preparation of Fe_2O_3@C nanocomposites using FeCl_3·6H_2O as iron source and glucose as carbon source under alkaline condition. The morphology and structure of ...A facile hydrothermal method was developed for the preparation of Fe_2O_3@C nanocomposites using FeCl_3·6H_2O as iron source and glucose as carbon source under alkaline condition. The morphology and structure of the as-prepared product were identified by transmission electron microscopy(TEM), high resolution transmission electron microscopy(HRTEM), field-emission scanning electron microscopy(FESEM),X-ray diffraction(XRD), Raman spectroscopy, Fourier Transform infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). The as-prepare α-Fe_2O_3@C nanocomposites were employed for supercapacitor electrode material. The synergistic combination of carbon electrical double-layer capacitance and α-Fe_2O_3 pseudo-capacitance established such nanocomposites as versatile platform for high performance supercapacitors. The synthesis method developed here is expected to obtain other metal oxide/carbon composite.展开更多
In this article, novel silver nanoparticles immobilized on macroporous polybenzoxazine nanocomposites (Ag-poly(BA-ddm)^x main) were prepared as catalysts for catalytic reduction reaction. For this purpose, a main-...In this article, novel silver nanoparticles immobilized on macroporous polybenzoxazine nanocomposites (Ag-poly(BA-ddm)^x main) were prepared as catalysts for catalytic reduction reaction. For this purpose, a main-chain type benzoxazine was cured in dimethyl sulfoxide by thermally activated ring-opening polymerization at 180℃ for 2days followed by the reduction of silver nitrate in homogeneous polybenzoxazine solution. The porous structure of the resin was confirmed by scanning electron microscope (SEM) analysis and N2 adsorption]desorption studies. Besides, transmission electron microscopy images showed that spherical particles (around 3-10 nm in sized) are dispersed in Ag-poly (BA-ddm)^x main network. The catalytic activity of the as-prepared nanocomposite has been investigated by photometrically monitoring the reduction of methylene blue by an excess of NaBH4. The kinetic data of the reduction reaction was explained by the assumption of a pseudo-first-order reaction with regard to methylene blue (MB). As evidence by Ultraviolet (UV) spectral analysis, the Ag-poly(BA-ddm)^x main catalyst possesses excellent catalytic reduction of MB, and no deactivation or poisoning of the catalyst was observed. The results demonstrate that porous polybenzoxazine supported silver nanoparticles can be applied as reusable catalysts with satisfied catalytic activity.展开更多
基金the National Natural Science Foundation of China (nos. 21403091 and 51473070)the Natural Science Foundation of Jiangsu Province (no. BK20140557)+1 种基金a project funded by Jiangsu University for Senior Intellectuals (grant no. 12JDG093)the Jiangsu Province for support under the innovation/entrepreneurship program (Suzutong [2012]19)
文摘A facile hydrothermal method was developed for the preparation of Fe_2O_3@C nanocomposites using FeCl_3·6H_2O as iron source and glucose as carbon source under alkaline condition. The morphology and structure of the as-prepared product were identified by transmission electron microscopy(TEM), high resolution transmission electron microscopy(HRTEM), field-emission scanning electron microscopy(FESEM),X-ray diffraction(XRD), Raman spectroscopy, Fourier Transform infrared spectroscopy(FTIR), and thermogravimetric analysis(TGA). The as-prepare α-Fe_2O_3@C nanocomposites were employed for supercapacitor electrode material. The synergistic combination of carbon electrical double-layer capacitance and α-Fe_2O_3 pseudo-capacitance established such nanocomposites as versatile platform for high performance supercapacitors. The synthesis method developed here is expected to obtain other metal oxide/carbon composite.
基金the National Natural Science Foundation of China(NSFC)for their financial support(Nos.51603093 and 21403091)supported by the Science and Technology Agency of Jiangsu Province(No.BK 20160515)China Postdoctoral Science Foundation(No.2016M600369)
文摘In this article, novel silver nanoparticles immobilized on macroporous polybenzoxazine nanocomposites (Ag-poly(BA-ddm)^x main) were prepared as catalysts for catalytic reduction reaction. For this purpose, a main-chain type benzoxazine was cured in dimethyl sulfoxide by thermally activated ring-opening polymerization at 180℃ for 2days followed by the reduction of silver nitrate in homogeneous polybenzoxazine solution. The porous structure of the resin was confirmed by scanning electron microscope (SEM) analysis and N2 adsorption]desorption studies. Besides, transmission electron microscopy images showed that spherical particles (around 3-10 nm in sized) are dispersed in Ag-poly (BA-ddm)^x main network. The catalytic activity of the as-prepared nanocomposite has been investigated by photometrically monitoring the reduction of methylene blue by an excess of NaBH4. The kinetic data of the reduction reaction was explained by the assumption of a pseudo-first-order reaction with regard to methylene blue (MB). As evidence by Ultraviolet (UV) spectral analysis, the Ag-poly(BA-ddm)^x main catalyst possesses excellent catalytic reduction of MB, and no deactivation or poisoning of the catalyst was observed. The results demonstrate that porous polybenzoxazine supported silver nanoparticles can be applied as reusable catalysts with satisfied catalytic activity.