In this article, we investigate the physical consequences that would result if electromagnetic field quanta were emitted at random speeds by a source and if the receiver could only perceive the fraction of the quantum...In this article, we investigate the physical consequences that would result if electromagnetic field quanta were emitted at random speeds by a source and if the receiver could only perceive the fraction of the quantum field that is slower than the speed of light in its individual rest frame. The analysis shows that this plausible hypothesis eliminates the weak points of conventional emission theories and that both postulates of special relativity are fulfilled. Furthermore, the results demonstrate that this theory can explain numerous experiments that are usually interpreted using different aspects of special relativity. However, the resulting quantum field theory is not equivalent to the special theory of relativity and requires neither spacetime nor Lorentz transformation. Furthermore, this approach offers a starting point for interpreting quantum effects and effects that contradict the special theory of relativity.展开更多
文摘In this article, we investigate the physical consequences that would result if electromagnetic field quanta were emitted at random speeds by a source and if the receiver could only perceive the fraction of the quantum field that is slower than the speed of light in its individual rest frame. The analysis shows that this plausible hypothesis eliminates the weak points of conventional emission theories and that both postulates of special relativity are fulfilled. Furthermore, the results demonstrate that this theory can explain numerous experiments that are usually interpreted using different aspects of special relativity. However, the resulting quantum field theory is not equivalent to the special theory of relativity and requires neither spacetime nor Lorentz transformation. Furthermore, this approach offers a starting point for interpreting quantum effects and effects that contradict the special theory of relativity.