We review recent advances in the field of quantum dot lasers on silicon. A summary of device performance,reliability, and comparison with similar quantum well lasers grown on silicon will be presented. We consider the...We review recent advances in the field of quantum dot lasers on silicon. A summary of device performance,reliability, and comparison with similar quantum well lasers grown on silicon will be presented. We consider the possibility of scalable, low size, weight, and power nanolasers grown on silicon enabled by quantum dot active regions for future short-reach silicon photonics interconnects.展开更多
In this paper, we review recent results on hybrid silicon mode-locked lasers with a focus on low phase noise optical pulse generation. Taking a high level design approach to lowering phase noise, we show the need for ...In this paper, we review recent results on hybrid silicon mode-locked lasers with a focus on low phase noise optical pulse generation. Taking a high level design approach to lowering phase noise, we show the need for long on-chip optical delay lines for mode-locked lasers to reach and overcome material limits. Key results include demonstration of the longest (cavity length 9 cm) integrated on-chip mode locked laser, 14 dB reduction of Lorentzian noise on a 20 GHz radio-frequency (RF) signal, and greater than 55 dB optical supermode noise suppres- sion using harmonically mode locked long cavity laser, 10 GHz passively mode locked laser with 15 kHz linewidth using on-chip all optical feedback stabilization.展开更多
基金supported by DARPA MTO E-PHI and the Semiconductor Research Corporationsupport of NSF graduate research fellowships
文摘We review recent advances in the field of quantum dot lasers on silicon. A summary of device performance,reliability, and comparison with similar quantum well lasers grown on silicon will be presented. We consider the possibility of scalable, low size, weight, and power nanolasers grown on silicon enabled by quantum dot active regions for future short-reach silicon photonics interconnects.
文摘In this paper, we review recent results on hybrid silicon mode-locked lasers with a focus on low phase noise optical pulse generation. Taking a high level design approach to lowering phase noise, we show the need for long on-chip optical delay lines for mode-locked lasers to reach and overcome material limits. Key results include demonstration of the longest (cavity length 9 cm) integrated on-chip mode locked laser, 14 dB reduction of Lorentzian noise on a 20 GHz radio-frequency (RF) signal, and greater than 55 dB optical supermode noise suppres- sion using harmonically mode locked long cavity laser, 10 GHz passively mode locked laser with 15 kHz linewidth using on-chip all optical feedback stabilization.