Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution i...Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution infrastructures, and reduced carbon emission of energy supply etc. to the communities. Despite of the several benefits, there are several challenges existing due to the integration of different characteristics and technology of DG sources in MG network. Power Quality (PQ) issue is one of the main technical challenges in MG power system. In order to provide improved PQ of energy supply, it is necessary to analyse and quantify the PQ level in MG network. This paper investigates the detail of PQ impacts in a real MG network carried out through an experimental analysis. Voltage and frequency variations/deviations are analysed in both on-grid and off-grid mode of MG operation at varying generation and varying load conditions. Similarly unbalance voltage and current level in neutral are estimated at unbalanced PV generation and uneven load distribution in MG network. Also current and voltage THD are estimated at different PV power level. Finally the results obtained from the analysis are compared to that of Australian network standard level.展开更多
Microgrid (MG) is a small entity of electrical network which comprises of various Distributed Generation (DG) sources, storage devices, and group of loads in various classes. MG provides reliable and secure energy sup...Microgrid (MG) is a small entity of electrical network which comprises of various Distributed Generation (DG) sources, storage devices, and group of loads in various classes. MG provides reliable and secure energy supply to the critical loads of communities while operating either in on-grid or off-grid mode. In this study, a coordinated power management control strategy for a typical low voltage (LV) MG network with integration of solar Photovoltaic (PV) and storage facility has been developed and analysed in Matlab-Simu-link software environment at various modes (on-grid, off-grid, and on-grid to off-grid transition) of MG operation. Solar PV and battery power inverters are considered as grid-support grid-forming (GsGfm) Voltage Source Inverter (VSI) with the implementation of modified droop and virtual output impedance control strategies. Proposed control strategy supports coordinated control operation between PV units and battery storage, equal power sharing among the DG sources, and smooth MG mode transition with regulation of voltage and frequency level in MG network. In addition, voltage and current THD level were analysed and verified as per the standard of AS4777.展开更多
Measurement of soil bulk density is important for understanding the physical, chemical, and biological properties of soil. Accurate and rapid soil bulk density measurement techniques play a significant role in agricul...Measurement of soil bulk density is important for understanding the physical, chemical, and biological properties of soil. Accurate and rapid soil bulk density measurement techniques play a significant role in agricultural experimental research. This review is a comprehensive summary of existing measurement methods and evaluates their advantages, disadvantages, potential sources of error,and directions for future development. These techniques can be broadly categorised as direct and indirect methods. Direct methods include core, clod, and excavation sampling, whereas indirect methods include the radiation and regression approaches. The core method is most widely used, but it is time consuming and difficult to use for sampling multiple soil depths. The size of the coring cylinder used, operator experience, sampling depth, and in-situ soil moisture content significantly affect its accuracy. The clod method is suitable for use with heavy clay soils, and its accuracy is dependent on equipment calibration, drying time, and operator experience, but the process is complicated and time consuming. Excavation techniques are most commonly used to evaluate the bulk density of forest soils, but have major limitations as they cannot be used in soils with large pores and their measurement accuracy is strongly influenced by soil texture and the type of analysis selected. The indirect methods appear to have greater accuracy than direct approaches, but have higher costs, are more complex, and require greater operator experience. One such approach uses gamma radiation, and its accuracy is strongly influenced by soil depth. Regression methods are economical as they can make indirect measurements, but these depend on good, quality data of soil texture and organic matter content and geographical and climatic properties. Also, like most of the other approaches, its accuracy decreases with sampling depth.展开更多
文摘Microgrid (MG) integrated with Distributed Generation (DG) provides several benefits like reliable, secure, and high efficient of energy supply, while minimizing power loss, deferring expansion of power distribution infrastructures, and reduced carbon emission of energy supply etc. to the communities. Despite of the several benefits, there are several challenges existing due to the integration of different characteristics and technology of DG sources in MG network. Power Quality (PQ) issue is one of the main technical challenges in MG power system. In order to provide improved PQ of energy supply, it is necessary to analyse and quantify the PQ level in MG network. This paper investigates the detail of PQ impacts in a real MG network carried out through an experimental analysis. Voltage and frequency variations/deviations are analysed in both on-grid and off-grid mode of MG operation at varying generation and varying load conditions. Similarly unbalance voltage and current level in neutral are estimated at unbalanced PV generation and uneven load distribution in MG network. Also current and voltage THD are estimated at different PV power level. Finally the results obtained from the analysis are compared to that of Australian network standard level.
文摘Microgrid (MG) is a small entity of electrical network which comprises of various Distributed Generation (DG) sources, storage devices, and group of loads in various classes. MG provides reliable and secure energy supply to the critical loads of communities while operating either in on-grid or off-grid mode. In this study, a coordinated power management control strategy for a typical low voltage (LV) MG network with integration of solar Photovoltaic (PV) and storage facility has been developed and analysed in Matlab-Simu-link software environment at various modes (on-grid, off-grid, and on-grid to off-grid transition) of MG operation. Solar PV and battery power inverters are considered as grid-support grid-forming (GsGfm) Voltage Source Inverter (VSI) with the implementation of modified droop and virtual output impedance control strategies. Proposed control strategy supports coordinated control operation between PV units and battery storage, equal power sharing among the DG sources, and smooth MG mode transition with regulation of voltage and frequency level in MG network. In addition, voltage and current THD level were analysed and verified as per the standard of AS4777.
基金the Government and Ministry of Higher Education and Scientific Research, Iraq, for providing funding for this study as a scholarship for Ph.D. student for the first author Ahmed Abed Gatea Al-Shammary
文摘Measurement of soil bulk density is important for understanding the physical, chemical, and biological properties of soil. Accurate and rapid soil bulk density measurement techniques play a significant role in agricultural experimental research. This review is a comprehensive summary of existing measurement methods and evaluates their advantages, disadvantages, potential sources of error,and directions for future development. These techniques can be broadly categorised as direct and indirect methods. Direct methods include core, clod, and excavation sampling, whereas indirect methods include the radiation and regression approaches. The core method is most widely used, but it is time consuming and difficult to use for sampling multiple soil depths. The size of the coring cylinder used, operator experience, sampling depth, and in-situ soil moisture content significantly affect its accuracy. The clod method is suitable for use with heavy clay soils, and its accuracy is dependent on equipment calibration, drying time, and operator experience, but the process is complicated and time consuming. Excavation techniques are most commonly used to evaluate the bulk density of forest soils, but have major limitations as they cannot be used in soils with large pores and their measurement accuracy is strongly influenced by soil texture and the type of analysis selected. The indirect methods appear to have greater accuracy than direct approaches, but have higher costs, are more complex, and require greater operator experience. One such approach uses gamma radiation, and its accuracy is strongly influenced by soil depth. Regression methods are economical as they can make indirect measurements, but these depend on good, quality data of soil texture and organic matter content and geographical and climatic properties. Also, like most of the other approaches, its accuracy decreases with sampling depth.