期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Molecular level biodegradation of phenol and its derivatives through dmp operon of Pseudomonas putida:A bio-molecular modeling and docking analysis 被引量:1
1
作者 sujay ray Arundhati Banerjee 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期144-151,共8页
Participation of Pseudomonas putida-derived methyl phenol(dmp) operon and Dmp R protein in the biodegradation of phenol or other harmful, organic, toxic pollutants was investigated at a molecular level. Documentatio... Participation of Pseudomonas putida-derived methyl phenol(dmp) operon and Dmp R protein in the biodegradation of phenol or other harmful, organic, toxic pollutants was investigated at a molecular level. Documentation documents that P. putida has Dmp R protein which positively regulates dmp operon in the presence of inducers; like phenols. From the operon,phenol hydroxylase encoded by dmp N gene, participates in degrading phenols after dmp operon is expressed. For the purpose, the 3-D models of the four domains from Dmp R protein and of the DNA sequences from the two Upstream Activation Sequences(UAS)present at the promoter region of the operon were demonstrated using discrete molecular modeling techniques. The best modeled structures satisfying their stereo-chemical properties were selected in each of the cases. To stabilize the individual structures, energy optimization was performed. In the presence of inducers, probable interactions among domains and then the two independent DNA structures with the fourth domain were perused by manifold molecular docking simulations. The complex structures were made to be stable by minimizing their overall energy. Responsible amino acid residues, nucleotide bases and binding patterns for the biodegradation, were examined. In the presence of the inducers, the biodegradation process is initiated by the interaction of phe50 from the first protein domain with the inducers. Only after the interaction of the last domain with the DNA sequences individually, the operon is expressed. This novel residue level study is paramount for initiating transcription in the operon; thereby leading to expression of phenol hydroxylase followed by phenol biodegradation. 展开更多
关键词 Biodegradation dmp operon Docking simulations Modeling Phenol P.putida
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部