Background:Heat stress(HS)disrupts the gut barrier allowing the uptake of lipopolysaccharide(LPS)and leads to an inflammatory response and changes in gut microbiota composition.Moringa oleifera leaf powder(MOLP)has be...Background:Heat stress(HS)disrupts the gut barrier allowing the uptake of lipopolysaccharide(LPS)and leads to an inflammatory response and changes in gut microbiota composition.Moringa oleifera leaf powder(MOLP)has been proposed to combat HS,yet its alleviate role is currently under investigation.The current study investigated the effects of chronic HS and MOLP supplementation on changes in redox status and immune response of cecal mucosa along with alteration in cecal microbiota.Methods:A total of 21 young New Zealand White(NZW)rabbits(male)about 32 weeks old(mean body weight of 3318±171 g)reared on a commercial pelleted diet were employed;divided into three groups(n=7):control(CON,25°C),heat stress(HS,35°C for 7 h daily),and HS supplemented orally with MOLP(HSM,35°C)at 200 mg/kg body weight per day for 4 weeks.Results:The results demonstrated that MOLP supplementation increased organ index of cecal tissue compared with the HS group(P>0.05).Levels of malonaldehyde(MDA)and activity of superoxide dismutase(SOD)as well as lactate dehydrogenase(LDH)were reduced in the cecal mucosa of the HSM group compared with the HS group.MOLP downregulated the contents of cecal mucosa LPS,several inflammatory markers(TNF-α/IL-1α/IL-1β),and myeloperoxidase(MPO)in the HSM group(P<0.05).Secretory immunoglobulin A(SIgA)was increased in the HSM group compared with the HS group(P<0.05).The transcriptome of cecal mucosa showed that MOLP reduced gene expression relative to several immune factors,including IL-10,IFNG,and RLA,whereas both HS and MOLP increased the gene expression of fat digestion and absorption pathway,including APOA1,FABP1,FABP2,MTTP,andLOC100344166,compared to the CON group(P<0.001).At the phylum level,the relative abundance of Proteobacteria was increased by HS,while Actinobacteria was significantly increased by HSM compared to other groups(P<0.05).At genus level,Papillibacter was higher in abundance in HSM groups compared to CON and HS groups(P<0.05).Higher butyrate concentrations were observed in the HSM group than HS and CON groups(P<0.05).Conclusion:In conclusion,HS in growing rabbits resulted in alteration of cecal microbiota at phyla level as well as increased oxidative stress and expression of mucosal inflammatory genes.Whereas,oral MOLP supplementation elevated the relative weight of cecum,affected their immunological and cecal micro-ecosystem function by improving antioxidant status and down-regulating mucosal tissue inflammatory response.展开更多
Alternatives to antibiotics for preventing bacteria-induced inflammation in early-weaned farm animals are sorely needed. Our previous study showed that Lactiplantibacillus plantarum L47 and inulin could alleviate dext...Alternatives to antibiotics for preventing bacteria-induced inflammation in early-weaned farm animals are sorely needed. Our previous study showed that Lactiplantibacillus plantarum L47 and inulin could alleviate dextran sulfate sodium(DSS)-induced colitis in mice. To explore the protective effects of L. plantarum L47 and inulin on the ileal inflammatory response in weaned piglets challenged with enterotoxigenic Escherichia coli(ETEC), 28 weaned piglets were assigned into four groups, namely, CON group—orally given 10 mL/d phosphate buffer saline(PBS), LI47 group—orally given a mixture of 10 m L/d L. plantarum L47 and inulin, ECON group—orally given 10 mL/d PBS and challenged by ETEC, and ELI47group—orally given 10 mL/d L. plantarum L47 and inulin mixture and challenged by ETEC. The results demonstrated that the combination of L. plantarum L47 and inulin reduced inflammatory responses and relieved the inflammatory damage caused by ETEC, including ileal morphological damage, reduced protein expression of ileal tight junction, decreased antioxidant capacity, and decreased antiinflammatory factors. Transcriptome analysis revealed that L. plantarum L47 and inulin up-regulated the gene expression of phospholipase A2 group IIA(PLA2G2A)(P < 0.05) as well as affected alphalinolenic acid(ALA) metabolism and linoleic acid metabolism. Moreover, L. plantarum L47 and inulin increased the levels of ALA(P < 0.05), lipoteichoic acid(LTA)(P < 0.05), and 12,13-epoxyoctadecenoic acid(12,13-EpOME)(P < 0.05) and the protein expression of Toll-like receptor 2(TLR2)(P = 0.05) in the ileal mucosa. In conclusion, L. plantarum L47 and inulin together alleviated ETEC-induced ileal inflammation in piglets by up-regulating the levels of ALA and 12,13-EpOME via the LTA/TLR2/PLA2G2A pathway.展开更多
基金supported by the National Key Basic Research Program of China(973 Program)under grant 2013CB127301.
文摘Background:Heat stress(HS)disrupts the gut barrier allowing the uptake of lipopolysaccharide(LPS)and leads to an inflammatory response and changes in gut microbiota composition.Moringa oleifera leaf powder(MOLP)has been proposed to combat HS,yet its alleviate role is currently under investigation.The current study investigated the effects of chronic HS and MOLP supplementation on changes in redox status and immune response of cecal mucosa along with alteration in cecal microbiota.Methods:A total of 21 young New Zealand White(NZW)rabbits(male)about 32 weeks old(mean body weight of 3318±171 g)reared on a commercial pelleted diet were employed;divided into three groups(n=7):control(CON,25°C),heat stress(HS,35°C for 7 h daily),and HS supplemented orally with MOLP(HSM,35°C)at 200 mg/kg body weight per day for 4 weeks.Results:The results demonstrated that MOLP supplementation increased organ index of cecal tissue compared with the HS group(P>0.05).Levels of malonaldehyde(MDA)and activity of superoxide dismutase(SOD)as well as lactate dehydrogenase(LDH)were reduced in the cecal mucosa of the HSM group compared with the HS group.MOLP downregulated the contents of cecal mucosa LPS,several inflammatory markers(TNF-α/IL-1α/IL-1β),and myeloperoxidase(MPO)in the HSM group(P<0.05).Secretory immunoglobulin A(SIgA)was increased in the HSM group compared with the HS group(P<0.05).The transcriptome of cecal mucosa showed that MOLP reduced gene expression relative to several immune factors,including IL-10,IFNG,and RLA,whereas both HS and MOLP increased the gene expression of fat digestion and absorption pathway,including APOA1,FABP1,FABP2,MTTP,andLOC100344166,compared to the CON group(P<0.001).At the phylum level,the relative abundance of Proteobacteria was increased by HS,while Actinobacteria was significantly increased by HSM compared to other groups(P<0.05).At genus level,Papillibacter was higher in abundance in HSM groups compared to CON and HS groups(P<0.05).Higher butyrate concentrations were observed in the HSM group than HS and CON groups(P<0.05).Conclusion:In conclusion,HS in growing rabbits resulted in alteration of cecal microbiota at phyla level as well as increased oxidative stress and expression of mucosal inflammatory genes.Whereas,oral MOLP supplementation elevated the relative weight of cecum,affected their immunological and cecal micro-ecosystem function by improving antioxidant status and down-regulating mucosal tissue inflammatory response.
基金National Key Research and Development Program of China (2021YFD1300301-5)。
文摘Alternatives to antibiotics for preventing bacteria-induced inflammation in early-weaned farm animals are sorely needed. Our previous study showed that Lactiplantibacillus plantarum L47 and inulin could alleviate dextran sulfate sodium(DSS)-induced colitis in mice. To explore the protective effects of L. plantarum L47 and inulin on the ileal inflammatory response in weaned piglets challenged with enterotoxigenic Escherichia coli(ETEC), 28 weaned piglets were assigned into four groups, namely, CON group—orally given 10 mL/d phosphate buffer saline(PBS), LI47 group—orally given a mixture of 10 m L/d L. plantarum L47 and inulin, ECON group—orally given 10 mL/d PBS and challenged by ETEC, and ELI47group—orally given 10 mL/d L. plantarum L47 and inulin mixture and challenged by ETEC. The results demonstrated that the combination of L. plantarum L47 and inulin reduced inflammatory responses and relieved the inflammatory damage caused by ETEC, including ileal morphological damage, reduced protein expression of ileal tight junction, decreased antioxidant capacity, and decreased antiinflammatory factors. Transcriptome analysis revealed that L. plantarum L47 and inulin up-regulated the gene expression of phospholipase A2 group IIA(PLA2G2A)(P < 0.05) as well as affected alphalinolenic acid(ALA) metabolism and linoleic acid metabolism. Moreover, L. plantarum L47 and inulin increased the levels of ALA(P < 0.05), lipoteichoic acid(LTA)(P < 0.05), and 12,13-epoxyoctadecenoic acid(12,13-EpOME)(P < 0.05) and the protein expression of Toll-like receptor 2(TLR2)(P = 0.05) in the ileal mucosa. In conclusion, L. plantarum L47 and inulin together alleviated ETEC-induced ileal inflammation in piglets by up-regulating the levels of ALA and 12,13-EpOME via the LTA/TLR2/PLA2G2A pathway.