The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report c...The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report chemical and boron isotopic compositions of tourmaline from wall rocks, monzogranites, and quartz veins within the belt, for studying the evolution of ore-forming fluids. Tourmaline crystals hosted in the monzogranite and wall rocks belong to the alkali group, while those hosted in quartz veins belong to both the alkali and X-site vacancy groups. Tourmaline in the walk rocks lies within the schorl-dravite series and becomes increasingly schorlitic in the monzogranite and quartz veins. Detrital tourmaline in the wall rocks is commonly both optically and chemically zoned,with cores being enriched in Mg compared with the rims. In the Al-Fe-Mg and Ca-Fe-Mg diagrams,tourmaline from the wall rocks plots in the fields of Al-saturated and Ca-poor metapelite, and extends into the field of Li-poor granites, while those from the monzogranite and quartz veins lie within the field of Li-poor granites. Compositional substitution is best represented by the MgFe_(-1), Al(NaR)_(-1), and AlO(Fe(OH))_(-1) exchange vectors. A wider range of δ^(11)B values from -11.1‰ to -7.1‰ is observed in the wall-rock tourmaline crystals, the B isotopic values combining with elemental diagrams indicate a source of metasediments without marine evaporates for the wall rocks in the Qiman Tagh belt. The δ^(11)B values of monzogranite-hosted tourmaline range from -10.7‰ and-9.2‰, corresponding to the continental crust sediments, and indicate a possible connection between the wall rocks and the monzogranite. The overlap in δ^(11)B values between wall rocks and monzogranite implies that a transfer of δ^(11)B values by anataxis with little isotopic fractionation between tourmaline and melts. Tourmaline crystals from quartz veins have δ^(11)B values between -11.0‰ and-9.6‰, combining with the elemental diagrams and geological features, thus indicating a common granite-derived source for the quartz veins and little B isotopic fractionation occurred. Tourmalinite in the wall rocks was formed by metasomatism by a granite-derived hydrothermal fluid, as confirmed by the compositional and geological features.Therefore, we propose a single B-rich sedimentary source in the Qiman Tagh belt, and little boron isotopic fractionation occurred during systematic fluid evolution from the wall rocks, through monzogranite, to quartz veins and tourmalinite.展开更多
The West Qingling Orogen is endowed with more than 1100 t gold resources and with 50 gold deposits,ranking it the third-largest gold province in China.The Jianchaling giant gold deposit with 52 t gold reserve is a typ...The West Qingling Orogen is endowed with more than 1100 t gold resources and with 50 gold deposits,ranking it the third-largest gold province in China.The Jianchaling giant gold deposit with 52 t gold reserve is a typical orogenic gold deposit in West Qinling Orogen.The deposit lacks accurate and direct metallogenic age.Five pyrite samples collected from the quartz-polymetallic veins yielded Re–Os isochron age of 206.3±2.7 Ma and an initial187 Os/188 Os ratio of 0.1154±0.0016(MSWD=0.54).The pyrites were analyzed by the electron microprobe(EMPA),and the results show that the iron content ranges from 45.1 to 47.8 wt.%,the sulfur content ranges from 52.0 to 53.5 wt.%,and the gold content varies from0.022 to 0.035%.The higher gold content means that gold is closely related to pyrite,which is a gold-bearing mineral.Moreover,the age is very close to the previous fuchsite40 Ar/39 Ar isotopic ages of 199–194 Ma,which indicates that the gold mineralization at Jianchaling has begun in the Late Triassic(206 Ma),and continued into the Early Jurassic.Through summary and comparison,it is found that the gold metallogenic age of the southern ore belt of the Mian-Lue Suture belt in the West Qinling is younger than that of the northern ore belt,suggesting that the gold deposits in the southern ore belt such as Jianchaling were formed in the transitional period from oceanic subduction to continental collision.展开更多
基金financially supported by the National Basic Research Program of China (No. 2014CB440800)China Geological Survey Bureau (No. 1212011140056)
文摘The Qiman Tagh W-Sn belt lies in the westernmost section of the East Kunlun Orogen, NW China, and is associated with early Paleozoic monzogranites, tourmaline is present throughout this belt. In this paper we report chemical and boron isotopic compositions of tourmaline from wall rocks, monzogranites, and quartz veins within the belt, for studying the evolution of ore-forming fluids. Tourmaline crystals hosted in the monzogranite and wall rocks belong to the alkali group, while those hosted in quartz veins belong to both the alkali and X-site vacancy groups. Tourmaline in the walk rocks lies within the schorl-dravite series and becomes increasingly schorlitic in the monzogranite and quartz veins. Detrital tourmaline in the wall rocks is commonly both optically and chemically zoned,with cores being enriched in Mg compared with the rims. In the Al-Fe-Mg and Ca-Fe-Mg diagrams,tourmaline from the wall rocks plots in the fields of Al-saturated and Ca-poor metapelite, and extends into the field of Li-poor granites, while those from the monzogranite and quartz veins lie within the field of Li-poor granites. Compositional substitution is best represented by the MgFe_(-1), Al(NaR)_(-1), and AlO(Fe(OH))_(-1) exchange vectors. A wider range of δ^(11)B values from -11.1‰ to -7.1‰ is observed in the wall-rock tourmaline crystals, the B isotopic values combining with elemental diagrams indicate a source of metasediments without marine evaporates for the wall rocks in the Qiman Tagh belt. The δ^(11)B values of monzogranite-hosted tourmaline range from -10.7‰ and-9.2‰, corresponding to the continental crust sediments, and indicate a possible connection between the wall rocks and the monzogranite. The overlap in δ^(11)B values between wall rocks and monzogranite implies that a transfer of δ^(11)B values by anataxis with little isotopic fractionation between tourmaline and melts. Tourmaline crystals from quartz veins have δ^(11)B values between -11.0‰ and-9.6‰, combining with the elemental diagrams and geological features, thus indicating a common granite-derived source for the quartz veins and little B isotopic fractionation occurred. Tourmalinite in the wall rocks was formed by metasomatism by a granite-derived hydrothermal fluid, as confirmed by the compositional and geological features.Therefore, we propose a single B-rich sedimentary source in the Qiman Tagh belt, and little boron isotopic fractionation occurred during systematic fluid evolution from the wall rocks, through monzogranite, to quartz veins and tourmalinite.
基金financially supported by the National Natural Science Foundation (No. 41403032)the National Crisis Mine Prospecting Foundation (No. 20089934)+1 种基金the discipline construction project of Guangzhou City University of Technology (No. 60-CQ190025)supported by the Exploration Team 711 of Northwest Mining and Geology Group Co., Ltd
文摘The West Qingling Orogen is endowed with more than 1100 t gold resources and with 50 gold deposits,ranking it the third-largest gold province in China.The Jianchaling giant gold deposit with 52 t gold reserve is a typical orogenic gold deposit in West Qinling Orogen.The deposit lacks accurate and direct metallogenic age.Five pyrite samples collected from the quartz-polymetallic veins yielded Re–Os isochron age of 206.3±2.7 Ma and an initial187 Os/188 Os ratio of 0.1154±0.0016(MSWD=0.54).The pyrites were analyzed by the electron microprobe(EMPA),and the results show that the iron content ranges from 45.1 to 47.8 wt.%,the sulfur content ranges from 52.0 to 53.5 wt.%,and the gold content varies from0.022 to 0.035%.The higher gold content means that gold is closely related to pyrite,which is a gold-bearing mineral.Moreover,the age is very close to the previous fuchsite40 Ar/39 Ar isotopic ages of 199–194 Ma,which indicates that the gold mineralization at Jianchaling has begun in the Late Triassic(206 Ma),and continued into the Early Jurassic.Through summary and comparison,it is found that the gold metallogenic age of the southern ore belt of the Mian-Lue Suture belt in the West Qinling is younger than that of the northern ore belt,suggesting that the gold deposits in the southern ore belt such as Jianchaling were formed in the transitional period from oceanic subduction to continental collision.