Herein, some fundamental open questions on engineering of “super” hydrogen sorption (storage) in carbonaceous nanomaterials are considered, namely: 1) on thermodynamic stability and related characteristics of some h...Herein, some fundamental open questions on engineering of “super” hydrogen sorption (storage) in carbonaceous nanomaterials are considered, namely: 1) on thermodynamic stability and related characteristics of some hydrogenated graphene layers nanostructures: relevance to the hydrogen storage problem;2) determination of thermodynamic characteristics of graphene hydrides;3) a treatment and interpretation of some recent STM, STS, HREELS/LEED, PES, ARPS and Raman spectroscopy data on hydrogensorbtion with epitaxial graphenes;4) on the physics of intercalation of hydrogen into surface graphene-like nanoblisters in pyrolytic graphite and epitaxial graphenes;5) on the physics of the elastic and plastic deformation of graphene walls in hydrogenated graphite nanofibers;6) on the physics of engineering of “super” hydrogen sorption (storage) in carbonaceous nanomaterials, in the light of analysis of the Rodriguez-Baker extraordinary data and some others. These fundamental open questions may be solved within several years.展开更多
The present analytical review is devoted to the current problem of thermodynamic stability and related thermodynamic characteristics of the following graphene layers systems: 1) double-side hydrogenated graphene of co...The present analytical review is devoted to the current problem of thermodynamic stability and related thermodynamic characteristics of the following graphene layers systems: 1) double-side hydrogenated graphene of composition CH (theoretical graphane) (Sofo et al. 2007) and experimental graphane (Elias et al. 2009);2) theoretical single-side hydrogenated graphene of composition CH;3) theoretical single-side hydrogenated graphene of composition C2H (graphone);4) experimental hydrogenated epitaxial graphene, bilayer graphene and a few layers of graphene on SiO2 or other substrates;5) experimental and theoretical single-external side hydrogenated single-walled carbon nanotubes, and experimental hydrofullerene C60H36;6) experimental single-internal side hydrogenated (up to C2H or CH composition) graphene nanoblisters with intercalated high pressure H2 gas inside them, formed on a surface of highly oriented pyrolytic graphite or epitaxial graphene under the atomic hydrogen treatment;and 7) experimental hydrogenated graphite nanofibers-multigraphene with intercalated solid H2 nano-regions of high density inside them, relevant to solving the problem of hydrogen on-board storage (Nechaev 2011-2012).展开更多
文摘Herein, some fundamental open questions on engineering of “super” hydrogen sorption (storage) in carbonaceous nanomaterials are considered, namely: 1) on thermodynamic stability and related characteristics of some hydrogenated graphene layers nanostructures: relevance to the hydrogen storage problem;2) determination of thermodynamic characteristics of graphene hydrides;3) a treatment and interpretation of some recent STM, STS, HREELS/LEED, PES, ARPS and Raman spectroscopy data on hydrogensorbtion with epitaxial graphenes;4) on the physics of intercalation of hydrogen into surface graphene-like nanoblisters in pyrolytic graphite and epitaxial graphenes;5) on the physics of the elastic and plastic deformation of graphene walls in hydrogenated graphite nanofibers;6) on the physics of engineering of “super” hydrogen sorption (storage) in carbonaceous nanomaterials, in the light of analysis of the Rodriguez-Baker extraordinary data and some others. These fundamental open questions may be solved within several years.
文摘The present analytical review is devoted to the current problem of thermodynamic stability and related thermodynamic characteristics of the following graphene layers systems: 1) double-side hydrogenated graphene of composition CH (theoretical graphane) (Sofo et al. 2007) and experimental graphane (Elias et al. 2009);2) theoretical single-side hydrogenated graphene of composition CH;3) theoretical single-side hydrogenated graphene of composition C2H (graphone);4) experimental hydrogenated epitaxial graphene, bilayer graphene and a few layers of graphene on SiO2 or other substrates;5) experimental and theoretical single-external side hydrogenated single-walled carbon nanotubes, and experimental hydrofullerene C60H36;6) experimental single-internal side hydrogenated (up to C2H or CH composition) graphene nanoblisters with intercalated high pressure H2 gas inside them, formed on a surface of highly oriented pyrolytic graphite or epitaxial graphene under the atomic hydrogen treatment;and 7) experimental hydrogenated graphite nanofibers-multigraphene with intercalated solid H2 nano-regions of high density inside them, relevant to solving the problem of hydrogen on-board storage (Nechaev 2011-2012).