The particle-size distribution and mineralogical composition of the clay (〈 2 μm) and fine-sand (0.25-0.10 mm) fractions in soils of two inland valleys in Abakaliki and Bende, Southeast Nigeria, were investigate...The particle-size distribution and mineralogical composition of the clay (〈 2 μm) and fine-sand (0.25-0.10 mm) fractions in soils of two inland valleys in Abakaliki and Bende, Southeast Nigeria, were investigated to provide basic information on soil-forming processes and agricultural potentials. These soils were silty or clayey, deriving from Cretaceous or Tertiary shale materials. The particle-size distribution and its computation on a clay-free basis revealed relatively remarkable lithologic breaks in a couple of pedons. The effect of lithologic discontinuities on soil mineralogical composition was not, however, conspicuous. Petrographic investigation revealed that quartz predominantly comprised the fine-sand fraction in the soils at both study sites. Nevertheless, the clay mineralogical composition of the soils was a mixture of kaolinite, irregularly interstratified smectite-illite intergrades (S/I), hydroxyl-A1 interlayered 2:1 type clays (HICs), vermiculite, smectite, halloysite and illite along with fine-sized quartz in Abakaliki. The soils of Bende predominantly contained smectite, which was partially interlayered with hydroxyl-A1 and kaolinite. It is suggested that seasonal floodwater has slowed the disintegration of weatherable clay minerals inherited from the shale, while quartz originating from the sandstone is predominant in the fine-sand fraction. Additionally, a possible soil-forming process observed at the both study sites was ferrolysis, which was indicated by a clear decreasing pattern of HICs downward in the soil profiles, The entry of S/I and vertical distribution patterns for a couple of clay minerals in the pedon suggested that the soils in Abakaliki have developed under the significant influence of aeolian dust delivered by the Harmattan. The findings might describe a site-specific deposition pattern of Harmattan dusts as well as hydromorphic soil-forming processes in the wetlands of the inland valleys.展开更多
Silicon(Si) is known as a beneficial nutrient in the cultivation of rice, playing a key role in photosynthesis enhancement, lodging resistance and tolerance to various environmental stress. The present study aimed to ...Silicon(Si) is known as a beneficial nutrient in the cultivation of rice, playing a key role in photosynthesis enhancement, lodging resistance and tolerance to various environmental stress. The present study aimed to examine available Si content in both lowland soils(n = 29) and neighboring upland soils(n = 21) collected from Benin and Nigeria and to evaluate the validity of the assessment results through a pot experiment. Our results revealed that the acetate-buffer method predicted Si concentration in rice straw at the harvest stage(R^2 = 0.68, P < 0.01) better than the anaerobic-incubation method(R2 = 0.31, P > 0.05), and 76% of the uplands and 38% of the lowlands were deficient(< 50 mg/kg) in acetate-buffer soluble Si. These findings suggest that the Si-deficiency soils prevail across the study area, making rice plants starved for Si and prone to environmental stress.展开更多
A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics o...A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed.展开更多
基金Project supported by the Grant-in-Aid of Japan Society for the Promotion of Science, Ministry of Education, Culture,Sports, Science and Technology (Nos. 15101002 and 19002001)
文摘The particle-size distribution and mineralogical composition of the clay (〈 2 μm) and fine-sand (0.25-0.10 mm) fractions in soils of two inland valleys in Abakaliki and Bende, Southeast Nigeria, were investigated to provide basic information on soil-forming processes and agricultural potentials. These soils were silty or clayey, deriving from Cretaceous or Tertiary shale materials. The particle-size distribution and its computation on a clay-free basis revealed relatively remarkable lithologic breaks in a couple of pedons. The effect of lithologic discontinuities on soil mineralogical composition was not, however, conspicuous. Petrographic investigation revealed that quartz predominantly comprised the fine-sand fraction in the soils at both study sites. Nevertheless, the clay mineralogical composition of the soils was a mixture of kaolinite, irregularly interstratified smectite-illite intergrades (S/I), hydroxyl-A1 interlayered 2:1 type clays (HICs), vermiculite, smectite, halloysite and illite along with fine-sized quartz in Abakaliki. The soils of Bende predominantly contained smectite, which was partially interlayered with hydroxyl-A1 and kaolinite. It is suggested that seasonal floodwater has slowed the disintegration of weatherable clay minerals inherited from the shale, while quartz originating from the sandstone is predominant in the fine-sand fraction. Additionally, a possible soil-forming process observed at the both study sites was ferrolysis, which was indicated by a clear decreasing pattern of HICs downward in the soil profiles, The entry of S/I and vertical distribution patterns for a couple of clay minerals in the pedon suggested that the soils in Abakaliki have developed under the significant influence of aeolian dust delivered by the Harmattan. The findings might describe a site-specific deposition pattern of Harmattan dusts as well as hydromorphic soil-forming processes in the wetlands of the inland valleys.
基金financial support by the Japan Society for the Promotion of Science (Grant No. 19002001)the Ministry of Agriculture, Forestry and Fisheries and the Ministry of Foreign Affairs, Japan
文摘Silicon(Si) is known as a beneficial nutrient in the cultivation of rice, playing a key role in photosynthesis enhancement, lodging resistance and tolerance to various environmental stress. The present study aimed to examine available Si content in both lowland soils(n = 29) and neighboring upland soils(n = 21) collected from Benin and Nigeria and to evaluate the validity of the assessment results through a pot experiment. Our results revealed that the acetate-buffer method predicted Si concentration in rice straw at the harvest stage(R^2 = 0.68, P < 0.01) better than the anaerobic-incubation method(R2 = 0.31, P > 0.05), and 76% of the uplands and 38% of the lowlands were deficient(< 50 mg/kg) in acetate-buffer soluble Si. These findings suggest that the Si-deficiency soils prevail across the study area, making rice plants starved for Si and prone to environmental stress.
文摘A water-swelling material is one of the rubbery impermeable materials which mixed synthetic resin elastomers as a base material, high absorbency polymers, filler and solvents. In this study, swelling characteristics of the water-swelling material on the water polluted with COD and BOD, as an impermeable material at coastal landfill sites, are examined by laboratory swelling ratio test. Furthermore, the factor in which it influences the swelling pressure of water-swelling material is clarified by measuring the swelling pressure. As the results, the COD nor the BOD concentrations in the soaked water influence the swelling ratio of the water-swelling material. When the thicknesses of water-swelling material are 2 mm and 3 mm, the maximum swelling pressure of 0.5 MPa or more that corresponds to hydraulic pressure by depth of 50 m is possessed.