The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created ...The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy(3.2 kJ)laser beams.An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution.Multiple diagnostics are used for plasma characterization,scattered radiation,and accelerated electrons.The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization.The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation,possibly because of a greater plasma density.Notable amplification is achieved in high-intensity speckles,indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.展开更多
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
Competition among the two-plasmon decay(TPD)of backscattered light of stimulated Raman scattering(SRS),filamentation of the electron-plasma wave(EPW)and forward side SRS is investigated by two-dimensional particlein-c...Competition among the two-plasmon decay(TPD)of backscattered light of stimulated Raman scattering(SRS),filamentation of the electron-plasma wave(EPW)and forward side SRS is investigated by two-dimensional particlein-cell simulations.Our previous work[K.Q.Pan et al.,Nucl.Fusion 58,096035(2018)]showed that in a plasma with the density near 1/10 of the critical density,the backscattered light would excite the TPD,which results in suppression of the backward SRS.However,this work further shows that when the laser intensity is so high(>10^(16)W/cm^(2))that the backward SRS cannot be totally suppressed,filamentation of the EPW and forward side SRS will be excited.Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage.Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW.This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.展开更多
基金This project was partially supported by the Advanced Research Using High Intensity Laser Produced Photons and Particles(ADONIS)project(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000789)the CAAS project(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000778)+3 种基金both from the European Regional Development FundThe results of the LQ1606 project were partially obtained with the financial support from the Ministry of Education,Youth and Sports as part of targeted support from the National Programme of Sustainability IIThe authors acknowledge support from the National Natural Science Foundation of China(Grant Nos.11775033,11875241,11975215,11905204,12035002)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD3-2019-6).
文摘The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy(3.2 kJ)laser beams.An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution.Multiple diagnostics are used for plasma characterization,scattered radiation,and accelerated electrons.The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization.The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation,possibly because of a greater plasma density.Notable amplification is achieved in high-intensity speckles,indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金supported by the National Natural Science Foundation of China(Nos.12205274,12275251,12035002,11975215)
文摘Competition among the two-plasmon decay(TPD)of backscattered light of stimulated Raman scattering(SRS),filamentation of the electron-plasma wave(EPW)and forward side SRS is investigated by two-dimensional particlein-cell simulations.Our previous work[K.Q.Pan et al.,Nucl.Fusion 58,096035(2018)]showed that in a plasma with the density near 1/10 of the critical density,the backscattered light would excite the TPD,which results in suppression of the backward SRS.However,this work further shows that when the laser intensity is so high(>10^(16)W/cm^(2))that the backward SRS cannot be totally suppressed,filamentation of the EPW and forward side SRS will be excited.Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage.Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW.This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.