Background:Glioblastoma multiforme(GBM)is the most general malignancy of the primary central nervous system that is characterized by high aggressiveness and lethality.Transmembrane protein 159(TMEM159)is an endoplasmi...Background:Glioblastoma multiforme(GBM)is the most general malignancy of the primary central nervous system that is characterized by high aggressiveness and lethality.Transmembrane protein 159(TMEM159)is an endoplasmic reticulum protein that can form oligomers with seipin.The TMEM159-seipin complex decides the site of lipid droplet(LD)formation,and the formation of LDs is a marker of GBM.However,the role of TMEM159 in the progression of GBM has not been investigated to date.Methods:In this study,we examined the genes that may be associated with patient prognosis in GBM by bioinformatics analyses,and identified the key genes that affect the development of GBM using single-cell RNA sequencing technology.The biological functions of TMEM159 in GBM cells were additionally assessed by clone formation and transwell assays as well as using a model of chick embryo chorioallantois membrane(CAM)and western blotting.The association between TMEM159 and epidermal growth factor receptor(EGFR)was finally analyzed in GBM cells.Results:A prognostic model was established and validated for predicting the prognosis.Survival curve analysis showed a critical difference in the prognosis of the high-and low-risk groups predicted by the prognostic model.The results demonstrated that TMEM159 affected the proliferation and invasion of GBM cells.The chick embryo CAM assays demonstrated that the inhibition of TMEM159 expression reduced angiogenesis in the CAM model.Conclusions:The prognostic model achieved good predictive potential for high-risk patients.The findings also revealed that TMEM159 might be an important prognostic factor for GBM,indicating that the protein may be a promising therapeutic target for suppressing the development of GBM.展开更多
基金supported by the National Natural Science Foundation of China(No.82173032)Liaoning Provincial Science and Technology Plan Project(No.2023JH2/101700156)+1 种基金the Medical and Industrial Crossover Project of Liaoning Cancer Hospital&Institute(No.LD202225)the Science and Technology Planning Project of Shenyang(No.20–205-4–003).
文摘Background:Glioblastoma multiforme(GBM)is the most general malignancy of the primary central nervous system that is characterized by high aggressiveness and lethality.Transmembrane protein 159(TMEM159)is an endoplasmic reticulum protein that can form oligomers with seipin.The TMEM159-seipin complex decides the site of lipid droplet(LD)formation,and the formation of LDs is a marker of GBM.However,the role of TMEM159 in the progression of GBM has not been investigated to date.Methods:In this study,we examined the genes that may be associated with patient prognosis in GBM by bioinformatics analyses,and identified the key genes that affect the development of GBM using single-cell RNA sequencing technology.The biological functions of TMEM159 in GBM cells were additionally assessed by clone formation and transwell assays as well as using a model of chick embryo chorioallantois membrane(CAM)and western blotting.The association between TMEM159 and epidermal growth factor receptor(EGFR)was finally analyzed in GBM cells.Results:A prognostic model was established and validated for predicting the prognosis.Survival curve analysis showed a critical difference in the prognosis of the high-and low-risk groups predicted by the prognostic model.The results demonstrated that TMEM159 affected the proliferation and invasion of GBM cells.The chick embryo CAM assays demonstrated that the inhibition of TMEM159 expression reduced angiogenesis in the CAM model.Conclusions:The prognostic model achieved good predictive potential for high-risk patients.The findings also revealed that TMEM159 might be an important prognostic factor for GBM,indicating that the protein may be a promising therapeutic target for suppressing the development of GBM.