The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the mac...The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the machine tool separately, and the interaction between them has been always overlooked. In this paper, a novel simplified method is proposed to realize the simulation of IMPMT by combining use the finite element method and state space method. In this method, the transfer function of the machine tool is built as a small state space. The small state space is obtained from the complicated finite element model of the whole machine tool. Furthermore, the control system of the machine tool is integrated with the transfer function of the machine tool to generate the cutting trajectory. Then, the tool tip response under the cutting force is used to predict the machined surface. Finally, a case study is carried out for a fly-cutting machining process, the dynamic response analysis of an ultra-precision fly-cutting machine tool and the machined surface verifies the effectiveness of this method. This research proposes a simplified method to study the IMPMT, the relationships between the machining process and the machine tool are established and the surface generation is obtained.展开更多
The development of microengineered hydrogels has opened up unlimited possibilities for designing complex structures at the microscale. In this study, we constructed an origami-inspired tubular structure with controlle...The development of microengineered hydrogels has opened up unlimited possibilities for designing complex structures at the microscale. In this study, we constructed an origami-inspired tubular structure with controlled mechanical buckling based on optically induced electrokinetics(OEK). By inducing a stress gradient in the thickness, a tubular structure can be formed from a poly(ethylene glycol) diacrylate(PEGDA) hydrogel film of various shapes that have been custom fabricated. To achieve an ideal three-dimensional(3D) structure, the amplitude of the tubular structure can be controlled by adjusting the aspect ratios or polymerization time. Furthermore, the tubular structure can be manipulated for the collection and transportation of microspheres.In summary, we provide an effective method for designing 3D structures at the micro-nano scale. This forming method holds great potential for achieving various functions in tissue engineering, drug packaging, and transportation in the future.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51505107)Natural Scientific Research Innovation Foundation in Harbin Institute of Technology of China(Grant No.HIT.NSRIF.2017029)
文摘The interaction between the machining process and the machine tool (IMPMT) plays an important role on high precision components manufacturing. However, most researches are focused on the machining process or the machine tool separately, and the interaction between them has been always overlooked. In this paper, a novel simplified method is proposed to realize the simulation of IMPMT by combining use the finite element method and state space method. In this method, the transfer function of the machine tool is built as a small state space. The small state space is obtained from the complicated finite element model of the whole machine tool. Furthermore, the control system of the machine tool is integrated with the transfer function of the machine tool to generate the cutting trajectory. Then, the tool tip response under the cutting force is used to predict the machined surface. Finally, a case study is carried out for a fly-cutting machining process, the dynamic response analysis of an ultra-precision fly-cutting machine tool and the machined surface verifies the effectiveness of this method. This research proposes a simplified method to study the IMPMT, the relationships between the machining process and the machine tool are established and the surface generation is obtained.
基金supported by the National Natural Science Foundation of China(Grant No.62273289)the Youth Innovation Science and Technology Support Program of Shandong Province(Grant No.2022KJ274)。
文摘The development of microengineered hydrogels has opened up unlimited possibilities for designing complex structures at the microscale. In this study, we constructed an origami-inspired tubular structure with controlled mechanical buckling based on optically induced electrokinetics(OEK). By inducing a stress gradient in the thickness, a tubular structure can be formed from a poly(ethylene glycol) diacrylate(PEGDA) hydrogel film of various shapes that have been custom fabricated. To achieve an ideal three-dimensional(3D) structure, the amplitude of the tubular structure can be controlled by adjusting the aspect ratios or polymerization time. Furthermore, the tubular structure can be manipulated for the collection and transportation of microspheres.In summary, we provide an effective method for designing 3D structures at the micro-nano scale. This forming method holds great potential for achieving various functions in tissue engineering, drug packaging, and transportation in the future.