TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element ...TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element in the human body that plays a significant role in physiological process.It has stable chemical properties and a low elastic modulus.In this study,a new material,TiZrTaNbSn HEAs,was proposed as a potential biomedical alloy.The Ti_(35)Zr_(25)Ta_(15)Nb_(15)Sn_(10)biomedical high-entropy alloys(BHEAs)were successfully prepared through an arc melting furnace and then remelted using a German high-temperature and high-pressure apparatus under GPa-level(4 GPa and 7 GPa).The precipitation behavior of the needle-like HCP-Zr_(5)Sn_(3)phase that precipitates discontinuously at the grain boundary was successfully controlled.The phase constitution,microstructure,and corrosion resistance of the alloy were studied.The results show that the needle-like HCP-Zr_(5)Sn_(3)phase is eliminated and the(Zr,Sn)-rich nano-precipitated phase is precipitated in the microstructure under high pressure,which leads to the narrowing of grain boundaries and consequently improves the corrosion resistance of the alloy.In addition,the formation mechanisms of(Zr,Sn)-rich nanoprecipitates in BHEAs were discussed.More Zr and Sn dissolve in the matrix due to the effect of high pressure,during the cooling process,they precipitate to form a(Zr,Sn)-rich nano-precipitated phase.展开更多
Realistic hydrological response is sensitive to the spatial variability of landscape properties. For a grid-based distributed rainfall-runoff model with a hypothesis of a uniform grid, the high-frequency information w...Realistic hydrological response is sensitive to the spatial variability of landscape properties. For a grid-based distributed rainfall-runoff model with a hypothesis of a uniform grid, the high-frequency information within a grid cell will be gradually lost as the resolution of the digital elevation model(DEM) grows coarser. Therefore, the performance of a hydrological model is usually scale-dependent. This study used the GridXinanjiang(GXAJ) model as an example to investigate the effects of subgrid variability on hydrological response at different scales. With the aim of producing a more reasonable hydrological response and spatial description of the landscape properties, a new distributed rainfall-runoff model integrating the subgrid variability(the GXAJSV model) was developed. In this model, the topographic index is used as an auxiliary variable correlated with the soil storage capacity. The incomplete beta distribution is suggested for simulating the probability distribution of the soil storage capacity within the raster grid. The Yaogu Basin in China was selected for model calibration and validation at different spatial scales.Results demonstrated that the proposed model can effectively eliminate the scale dependence of the GXAJ model and produce a more reasonable hydrological response.展开更多
High-entropy alloys have been proved to be potential candidate materials in the biomedical field due to their balanced mechanical properties and excellent biocompatibility.The effects of atomic ratios on the as-cast m...High-entropy alloys have been proved to be potential candidate materials in the biomedical field due to their balanced mechanical properties and excellent biocompatibility.The effects of atomic ratios on the as-cast microstructural evolution,mechanical properties,and electrochemical property of TiZrTaNbSn high-entropy alloys were studied systematically.The crystal structure of TiZrTaNbSn high-entropy alloys is single BCC phase,and the microstructural evolution is based on atomic ratio.The dendric structure,peritectic structure,pseudo eutectic and equiaxed grain,which are associated with element segregation,can be obtained by non-equal atomic ratio.Ti_(30)Zr_(20)Ta_(20)Nb_(20)Sn_(10)alloy demonstrates a high compressive strength and fracture strain,which are 2,571.8 MPa and 12%,respectively,and the fracture behavior is quasicleavage faults.The Ti_(45)Zr_(35)Ta_(5)Nb_(5)Sn_(10),Ti_(30)Zr_(20)Ta_(20)Nb_(20)Sn_(10)and Ti_(35)Zr_(25)Ta_(15)Nb_(15)Sn_(10)alloys show excellent corrosion resistance according to Nyquist diagram,polarization curves and corrosion morphology.Compared with TiZrTaNbSn alloy,the corrosion rate of Ti_(45)Zr_(35)Ta_(5)Nb_(5)Sn_(10) alloy increases by about 98.9%.It can be concluded that non-equal atomic ratios are effective for microstructure control and performance optimization.展开更多
The hydrogenation behavior of Ti44A16Nb1Cr2V(at%)alloy at temperature range of 1373-1693 K and its effect on microstructure and room-temperature mechanical properties were studied systematically in this study.The resu...The hydrogenation behavior of Ti44A16Nb1Cr2V(at%)alloy at temperature range of 1373-1693 K and its effect on microstructure and room-temperature mechanical properties were studied systematically in this study.The results show that hydrogen content increases with the increase in temperature,and the maximum hydrogen content is 0.126 wt%at 1693 K.The heat of solution of hydrogen is calculated as 82.9 kJ·mol^(-1)by curve fitting,indicating that hydrogen absorptionin TiAl alloys is endothermic.Hydrogen promotes the lamellar colony size because hydrogen promotes the diffusion of elements.Hydrogen stabilizes B2phase during hydrogenation resulting in more residual B2phase in the hydrogenated alloy.The nanohardness and elastic modulus decrease after hydrogenation due to that hydrogen weakens the bonds.The Ti44A16Nb1Cr2V alloy exhibits higher plasticity and lower flow stress hydrogenation with 0.039 wt%H,and the ultimate compressive strength decreases from 1220 to 1130 MPa,while the fracture strain is enhanced by 26%.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(No.LZY23E050001)the National Natural Science Foundation of China(Nos.52271106,52171120,52001262).
文摘TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element in the human body that plays a significant role in physiological process.It has stable chemical properties and a low elastic modulus.In this study,a new material,TiZrTaNbSn HEAs,was proposed as a potential biomedical alloy.The Ti_(35)Zr_(25)Ta_(15)Nb_(15)Sn_(10)biomedical high-entropy alloys(BHEAs)were successfully prepared through an arc melting furnace and then remelted using a German high-temperature and high-pressure apparatus under GPa-level(4 GPa and 7 GPa).The precipitation behavior of the needle-like HCP-Zr_(5)Sn_(3)phase that precipitates discontinuously at the grain boundary was successfully controlled.The phase constitution,microstructure,and corrosion resistance of the alloy were studied.The results show that the needle-like HCP-Zr_(5)Sn_(3)phase is eliminated and the(Zr,Sn)-rich nano-precipitated phase is precipitated in the microstructure under high pressure,which leads to the narrowing of grain boundaries and consequently improves the corrosion resistance of the alloy.In addition,the formation mechanisms of(Zr,Sn)-rich nanoprecipitates in BHEAs were discussed.More Zr and Sn dissolve in the matrix due to the effect of high pressure,during the cooling process,they precipitate to form a(Zr,Sn)-rich nano-precipitated phase.
基金supported by the Graduate Students Scientific Research Innovation Plan of Jiangsu Province(Grant No.CXZZ12_0243)the China Scholarship Council(Grant No.201306710013)+1 种基金the State Major Project of Water Pollution Control and Management(Grant No.2014ZX07101-011)the Special Fund for Public Welfare of Ministry of Water Resources of China(Grant No.201501007)
文摘Realistic hydrological response is sensitive to the spatial variability of landscape properties. For a grid-based distributed rainfall-runoff model with a hypothesis of a uniform grid, the high-frequency information within a grid cell will be gradually lost as the resolution of the digital elevation model(DEM) grows coarser. Therefore, the performance of a hydrological model is usually scale-dependent. This study used the GridXinanjiang(GXAJ) model as an example to investigate the effects of subgrid variability on hydrological response at different scales. With the aim of producing a more reasonable hydrological response and spatial description of the landscape properties, a new distributed rainfall-runoff model integrating the subgrid variability(the GXAJSV model) was developed. In this model, the topographic index is used as an auxiliary variable correlated with the soil storage capacity. The incomplete beta distribution is suggested for simulating the probability distribution of the soil storage capacity within the raster grid. The Yaogu Basin in China was selected for model calibration and validation at different spatial scales.Results demonstrated that the proposed model can effectively eliminate the scale dependence of the GXAJ model and produce a more reasonable hydrological response.
基金supported by the National Natural Science Foundation of China(Grant Nos.52001262,52071188,52171120)Key Research and Development Project of Shanxi Province(Grant No.2021SF-297)Zhejiang Province Natural Science Foundation of China(Grant Nos.ZY22E010293,LQ20E010003).
文摘High-entropy alloys have been proved to be potential candidate materials in the biomedical field due to their balanced mechanical properties and excellent biocompatibility.The effects of atomic ratios on the as-cast microstructural evolution,mechanical properties,and electrochemical property of TiZrTaNbSn high-entropy alloys were studied systematically.The crystal structure of TiZrTaNbSn high-entropy alloys is single BCC phase,and the microstructural evolution is based on atomic ratio.The dendric structure,peritectic structure,pseudo eutectic and equiaxed grain,which are associated with element segregation,can be obtained by non-equal atomic ratio.Ti_(30)Zr_(20)Ta_(20)Nb_(20)Sn_(10)alloy demonstrates a high compressive strength and fracture strain,which are 2,571.8 MPa and 12%,respectively,and the fracture behavior is quasicleavage faults.The Ti_(45)Zr_(35)Ta_(5)Nb_(5)Sn_(10),Ti_(30)Zr_(20)Ta_(20)Nb_(20)Sn_(10)and Ti_(35)Zr_(25)Ta_(15)Nb_(15)Sn_(10)alloys show excellent corrosion resistance according to Nyquist diagram,polarization curves and corrosion morphology.Compared with TiZrTaNbSn alloy,the corrosion rate of Ti_(45)Zr_(35)Ta_(5)Nb_(5)Sn_(10) alloy increases by about 98.9%.It can be concluded that non-equal atomic ratios are effective for microstructure control and performance optimization.
基金financially supported by the National Natural Science Foundation of China(No.51274076)the National Science Fund for Distinguished Young Scholars(No.NSFC51425402)。
文摘The hydrogenation behavior of Ti44A16Nb1Cr2V(at%)alloy at temperature range of 1373-1693 K and its effect on microstructure and room-temperature mechanical properties were studied systematically in this study.The results show that hydrogen content increases with the increase in temperature,and the maximum hydrogen content is 0.126 wt%at 1693 K.The heat of solution of hydrogen is calculated as 82.9 kJ·mol^(-1)by curve fitting,indicating that hydrogen absorptionin TiAl alloys is endothermic.Hydrogen promotes the lamellar colony size because hydrogen promotes the diffusion of elements.Hydrogen stabilizes B2phase during hydrogenation resulting in more residual B2phase in the hydrogenated alloy.The nanohardness and elastic modulus decrease after hydrogenation due to that hydrogen weakens the bonds.The Ti44A16Nb1Cr2V alloy exhibits higher plasticity and lower flow stress hydrogenation with 0.039 wt%H,and the ultimate compressive strength decreases from 1220 to 1130 MPa,while the fracture strain is enhanced by 26%.