An Fe–44Ni nanocrystalline(NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods an...An Fe–44Ni nanocrystalline(NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase(γ-(Fe,Ni)) and a body-centered cubic phase(α-(Fe,Ni)) when it is annealed at temperatures less than 400℃. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500℃ and 600℃ do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.展开更多
The FeSiBC amorphous powder cores were fabricated using powders of the FeSiBC amorphous ribbons which were mechanically crushed for a short time, and the relationship between magnetic properties and powder particle si...The FeSiBC amorphous powder cores were fabricated using powders of the FeSiBC amorphous ribbons which were mechanically crushed for a short time, and the relationship between magnetic properties and powder particle sizes was evaluated. The saturation magnetization Bs of the amorphous Fe82Si2B15C1 alloy was 1.62 T, which provided a superior dc-bias property for the powder cores. Meanwhile, a stable permeability up to high frequency range over 10 MHz and the low core loss of 400 kW/ma at f=50 kHz and Bm =0.1 T were obtained. These excellent high-frequency magnetic properties of the FeSiBC amorphous powder cores could be attributed to the effective electrical insulation between the FeSiBC amorphous powders made by mechanical crushing.展开更多
Fe73. 5 Cu1 Nb3 Si15.5B7 nanocrystalline powder cores with different particle sizes ranging from 10 to 125 9m were fabricated by cold-pressing techniques. The cores exhibited increased core loss P cv and decreased ini...Fe73. 5 Cu1 Nb3 Si15.5B7 nanocrystalline powder cores with different particle sizes ranging from 10 to 125 9m were fabricated by cold-pressing techniques. The cores exhibited increased core loss P cv and decreased initial permea- bility μi with addition of fine powders below 50 μm in size, and the content should be less than 40 mass%. It was thought to be closely related to the high coercive force H c due to the stresses generated during the crushing process and high demagnetization fields of small powders. Furthermore, modifying the alloy compositions by adding defined amount of Ni could improve the soft magnetic properties, including superior characteristics of permeability under high direct current (DC) bias field and comparable low core loss at high frequency.展开更多
Toroidal shape FeCuNbSiB nanocrystalline alloy powder cores were prepared by cold pressing using me- chanically crushed and ball-milled powders, respectively. The morphologies and their effects on the magnetic proper-...Toroidal shape FeCuNbSiB nanocrystalline alloy powder cores were prepared by cold pressing using me- chanically crushed and ball-milled powders, respectively. The morphologies and their effects on the magnetic proper- ties of the compacted cores were investigated. Compared with ball-milled powders, mechanically crushed ones have more regular shapes and rounder edges, which lead to better inter-particle insulation. FeCuNbSiB nanocrystalline al- loy powder cores fabricated from mechanically crushed powders exhibit remarkably lower core loss of about 248.2 kW/m3 at 100 kHz for maximum flux density Bm 0.1 T, and more stable permeability up to 10 MHz. Moreover, the dc-bias property could be improved significantly using mechanically crushed powders.展开更多
基金financially supported by the Major State Basic Research Development Program of China (No. 2014CB643300)the National Natural Science Foundation of China (No. U1560104)the National Environmental Corrosion Platform (NECP)
文摘An Fe–44Ni nanocrystalline(NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase(γ-(Fe,Ni)) and a body-centered cubic phase(α-(Fe,Ni)) when it is annealed at temperatures less than 400℃. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500℃ and 600℃ do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.
基金Item Sponsored by National Natural Science Foundation of China(51071050)
文摘The FeSiBC amorphous powder cores were fabricated using powders of the FeSiBC amorphous ribbons which were mechanically crushed for a short time, and the relationship between magnetic properties and powder particle sizes was evaluated. The saturation magnetization Bs of the amorphous Fe82Si2B15C1 alloy was 1.62 T, which provided a superior dc-bias property for the powder cores. Meanwhile, a stable permeability up to high frequency range over 10 MHz and the low core loss of 400 kW/ma at f=50 kHz and Bm =0.1 T were obtained. These excellent high-frequency magnetic properties of the FeSiBC amorphous powder cores could be attributed to the effective electrical insulation between the FeSiBC amorphous powders made by mechanical crushing.
基金Sponsored by National High-tech Research and Development Program(863 Program)of China(2013AA030802)
文摘Fe73. 5 Cu1 Nb3 Si15.5B7 nanocrystalline powder cores with different particle sizes ranging from 10 to 125 9m were fabricated by cold-pressing techniques. The cores exhibited increased core loss P cv and decreased initial permea- bility μi with addition of fine powders below 50 μm in size, and the content should be less than 40 mass%. It was thought to be closely related to the high coercive force H c due to the stresses generated during the crushing process and high demagnetization fields of small powders. Furthermore, modifying the alloy compositions by adding defined amount of Ni could improve the soft magnetic properties, including superior characteristics of permeability under high direct current (DC) bias field and comparable low core loss at high frequency.
基金Sponsored by National High-tech Research and Development Program of China(2012AA030301)
文摘Toroidal shape FeCuNbSiB nanocrystalline alloy powder cores were prepared by cold pressing using me- chanically crushed and ball-milled powders, respectively. The morphologies and their effects on the magnetic proper- ties of the compacted cores were investigated. Compared with ball-milled powders, mechanically crushed ones have more regular shapes and rounder edges, which lead to better inter-particle insulation. FeCuNbSiB nanocrystalline al- loy powder cores fabricated from mechanically crushed powders exhibit remarkably lower core loss of about 248.2 kW/m3 at 100 kHz for maximum flux density Bm 0.1 T, and more stable permeability up to 10 MHz. Moreover, the dc-bias property could be improved significantly using mechanically crushed powders.