期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A New Vehicle Detection Framework Based on Feature-Guided in the Road Scene
1
作者 tianmin deng Xiyue Zhang Xinxin Cheng 《Computers, Materials & Continua》 SCIE EI 2024年第1期533-549,共17页
Vehicle detection plays a crucial role in the field of autonomous driving technology.However,directly applying deep learning-based object detection algorithms to complex road scene images often leads to subpar perform... Vehicle detection plays a crucial role in the field of autonomous driving technology.However,directly applying deep learning-based object detection algorithms to complex road scene images often leads to subpar performance and slow inference speeds in vehicle detection.Achieving a balance between accuracy and detection speed is crucial for real-time object detection in real-world road scenes.This paper proposes a high-precision and fast vehicle detector called the feature-guided bidirectional pyramid network(FBPN).Firstly,to tackle challenges like vehicle occlusion and significant background interference,the efficient feature filtering module(EFFM)is introduced into the deep network,which amplifies the disparities between the features of the vehicle and the background.Secondly,the proposed global attention localization module(GALM)in the model neck effectively perceives the detailed position information of the target,improving both the accuracy and inference speed of themodel.Finally,the detection accuracy of small-scale vehicles is further enhanced through the utilization of a four-layer feature pyramid structure.Experimental results show that FBPN achieves an average precision of 60.8% and 97.8% on the BDD100K and KITTI datasets,respectively,with inference speeds reaching 344.83 frames/s and 357.14 frames/s.FBPN demonstrates its effectiveness and superiority by striking a balance between detection accuracy and inference speed,outperforming several state-of-the-art methods. 展开更多
关键词 Driverless car vehicle detection channel attention mechanism deep learning
下载PDF
基于多尺度分割注意力的无人机航拍图像目标检测算法 被引量:14
2
作者 冒国韬 邓天民 于楠晶 《航空学报》 EI CAS CSCD 北大核心 2023年第5期268-278,共11页
随着无人机(UAV)遥感技术的发展,无人机航拍图像目标检测逐渐成为无人机应用领域的一项核心技术,在交通规划、军事侦查及环境监测等领域具有重要应用价值。针对无人机图像中小目标实例多、背景复杂及特征提取困难的问题,提出一种基于多... 随着无人机(UAV)遥感技术的发展,无人机航拍图像目标检测逐渐成为无人机应用领域的一项核心技术,在交通规划、军事侦查及环境监测等领域具有重要应用价值。针对无人机图像中小目标实例多、背景复杂及特征提取困难的问题,提出一种基于多尺度分割注意力的无人机航拍图像目标检测算法MSA-YOLO。首先,利用嵌入在骨干网络瓶颈层的多尺度分割注意力单元建立多尺度特征间的远程依赖关系,从而强化关键特征的表达能力并抑制背景噪声干扰;其次,设计了一种自适应加权特征融合方法,该方法动态的优化各输出特征层权重,实现浅层特征与深层特征的深度融合;最后,在VisDrone公开数据集上的实验结果表明:该方法取得了34.7%的平均均值精度(mAP),相比于基线算法YOLOv5提高了2.8%,在复杂背景下仍能显著提升无人机图像目标检测性能。 展开更多
关键词 无人机图像 计算机视觉 目标检测 注意力机制 自适应加权特征融合
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部