Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.展开更多
Glutamine metabolism(GM)plays an important role in tumor growth and proliferation.Skin cutaneous melanoma(SKCM)is a glutamine-dependent cancer.However,the molecular characteristics and action mechanism of GM on SKCM r...Glutamine metabolism(GM)plays an important role in tumor growth and proliferation.Skin cutaneous melanoma(SKCM)is a glutamine-dependent cancer.However,the molecular characteristics and action mechanism of GM on SKCM remain unclear.Therefore,we aimed to explore the effects of GM-related genes on survival,clinicopathological characteristics,and the tumor microenvironment in SKCM.In this study,682 SKCM samples were obtained from the Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO)databases.Consensus clustering was used to classify SKCM samples into distinct subtypes based on 41 GM-related genes.Differences in survival,immune infiltration,clinical characteristics,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways as well as differentially expressed genes(DEGs)between subgroups were evaluated.A prognostic model was constructed according to prognostic DEGs.Differential analyses in survival,immune infiltration,tumor microenvironment(TME),tumor mutation burden(TMB),stemness,and drug sensitivity between risk groups were conducted.We identified two distinct GM-related subtypes on SKCM and found that GM-related gene alterations were associated with survival probability,clinical features,biological function,and immune infiltration.Then a risk model based on six DEGs(IL18,SEMA6A,PAEP,TNFRSF17,AIM2,and CXCL10)was constructed and validated for predicting overall survival in SKCM patients.The results showed that the risk score was negatively correlated with CD8+T cells,activated CD4+memory T cells,M1 macrophages,andγδT cells.The group with a low-risk score was accompanied by a better survival rate with higher TME scores and lower stemness index.Moreover,the group with high-and low-risk score had a significant difference with the sensitivity of 75 drugs(p<0.001).Overall,distinct subtypes in SKCM patients based on GM-related genes were identified and the risk model was constructed,which might contribute to prognosis prediction,guide clinical therapy,and develop novel therapeutic strategies.展开更多
The highly selective catalytic transfer hydrogenation(CTH)of furfural(FF)to furfuryl alcohol(FOL)is a significant route of biomass valorization.Herein,a series microporous Zr-metal organic framework(ZrMOF)functionaliz...The highly selective catalytic transfer hydrogenation(CTH)of furfural(FF)to furfuryl alcohol(FOL)is a significant route of biomass valorization.Herein,a series microporous Zr-metal organic framework(ZrMOF)functionalized by sulfonic groups are prepared.Based on the comprehensive structural characterizations by means of X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),N2 physisorption,Thermogravimetric(TG)and Fourier transformed infrared spectroscopy(FTIR),we find that sulfonic acid(–SO_(3)H)functional groups are tethered on the UIO-66 without affecting the structure of the framework.Systematic characterizations(NH_(3)-TPD,CO_(2)-TPD,and in-situ FTIR)demonstrate that modifying of sulfonic groups on UIO-66 results in the formation of stronger Lewis acidic-basic and Brnsted acidis sites.The cooperative role of the versatile Lewis acidic-basic and Brnsted acidic sites in 60%mol fraction of sulfonic acid-containing UIO-66(UIO-S_(0.6))retain high surface area and exhibit excellent catalytic performance of 94.7%FOL yield and 16.9 h^(-1).turnover number(TOF)under mild conditions.Kinetic experiments reveal that the activation energy of the CTH of furfural(FF)over UIO-S_(0.6) catalyst is as low as 50.8 k J mol^(-1).Besides,the hydrogen transfer mechanism is investigated through isotope labeling experiments,exhibiting that theβ-H in isopropanol is transferred to the a-C of FF by forming six-membered intermediates on the Lewis acidic-basic and Brnsted acidic sites of the UIO-S_(0.6),which is the rate-determining step in the formation of FOL.展开更多
With the gradual expansion of China's influence,the translation of tourism texts has become one of the important media for cultural exchanges between China and foreign countries.This paper adopts the translation s...With the gradual expansion of China's influence,the translation of tourism texts has become one of the important media for cultural exchanges between China and foreign countries.This paper adopts the translation strategies of the foreignization and domestication,studies from the perspective of the function of the tourism text,and analyzes the proper nouns,Chinese four-character words,and sentence expressions in translation practice at the vocabulary and syntactic levels.Following the vocative function and information function contained in the tourism text,this paper elaborates on the purpose of attracting tourists and promoting the communication between Chinese and Western cultures.展开更多
The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to ...The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to form key intermediates with reactant molecules.The present study successfully synthesized a crusiform-like mesoporous structure of nitrogen-doped carbon-coated Cu_(2)O/Cu(Cu_(2)O/Cu/N-C)with a Cu_(2)O/dual electron acceptor interface using etched HKUST-1 as the precursor.A series of theoretical and experimental studies have demonstrated that the Cu_(2)O/Cu/N-C interface in the photocatalytic homo-coupling of terminal alkynes not only effectively enhances the separation of photogenerated electron−hole pairs,but also facilitates the formation of the key intermediate[Cu_(2)O/Cu/N-C]-phenylacetylide and promotes the rearrangement of its internal charges.As a result,the homo-coupling reaction can be effectively facilitated.The primary reason for the functional role of Cu_(2)O/Cu/N-C interface lies in the downward bending of energy band from Cu_(2)O to N-doped C layers,induced by the different work functions of Cu_(2)O,Cu and N-doped C layers.Consequently,Cu_(2)O/Cu/N-C photocatalysts demonstrate exceptional photocatalytic activity in the homo-coupling reaction of terminal alkynes under blue-light irradiation and air atmosphere.The present study presents a novel research methodology for the development of highly efficient visible light catalysts to facilitate organic reactions in future applications.展开更多
Genomic data serve as an invaluable resource for unraveling the intricacies of the higher plant systems,including the constituent elements within and among species.Through various efforts in genomic data archiving,int...Genomic data serve as an invaluable resource for unraveling the intricacies of the higher plant systems,including the constituent elements within and among species.Through various efforts in genomic data archiving,integrative analysis and value-added curation,the National Genomics Data Center(NGDC),which is a part of the China National Center for Bioinformation(CNCB),has successfully established and currently maintains a vast amount of database resources.This dedicated initiative of the NGDC facilitates a data-rich ecosystem that greatly strengthens and supports genomic research efforts.Here,we present a comprehensive overview of central repositories dedicated to archiving,presenting,and sharing plant omics data,introduce knowledgebases focused on variants or gene-based functional insights,highlight species-specific multiple omics database resources,and briefly review the online application tools.We intend that this review can be used as a guide map for plant researchers wishing to select effective data resources from the NGDC for their specific areas of study.展开更多
Recently,air pollution especially fine particulate matters(PM_(2.5))and ozone(O_(3))has become a severe issue in China.In this study,we first characterized the temporal trends of PM_(2.5) and O_(3) for Beijing,Guangzh...Recently,air pollution especially fine particulate matters(PM_(2.5))and ozone(O_(3))has become a severe issue in China.In this study,we first characterized the temporal trends of PM_(2.5) and O_(3) for Beijing,Guangzhou,Shanghai,andWuhan respectively during 2018-2020.The annual mean PM2.5 has decreased by 7.82%-33.92%,while O_(3) concentration showed insignificant variations by-6.77%-4.65%during 2018-2020.The generalized additive models(GAMs)were implemented to quantify the contribution of individual meteorological factors and their gas precursors on PM_(2.5) and O_(3).On a short-term perspective,GAMs modeling shows that the daily variability of PM_(2.5) concentration is largely related to the variation of precursor gases(R=0.67-0.90),while meteorological conditions mainly affect the daily variability of O_(3) concentration(R=0.65-0.80)during 2018-2020.The impact of COVID-19 lockdown on PM_(2.5) and O_(3) concentrations were also quantified by using GAMs.During the 2020 lockdown,PM_(2.5) decreased significantly for these megacities,yet the ozone concentration showed an increasing trend compared to 2019.The GAMs analysis indicated that the contribution of precursor gases to PM_(2.5) and O_(3) changes is 3-8 times higher than that of meteorological factors.In general,GAMsmodeling on air quality is helpful to the understanding and control of PM2.5 and O3 pollution in China.展开更多
Modulation of the surface electron distribution is a challenging problem that determines the adsorption ability of catalytic process.Here,we address this challenge by bridging the inner and outer layers of the core–s...Modulation of the surface electron distribution is a challenging problem that determines the adsorption ability of catalytic process.Here,we address this challenge by bridging the inner and outer layers of the core–shell structure through the bridge Br atom.Carbon shell wrapped copper bromide nanorods(CuBr@C)are constructed for the first time by chemical vapour deposition with hexabromobenzene(HBB).HBB pyrolysis provides both bridge Br atom and C shells.The C shell protects the stability of the internal halide structure,while the bridge Br atom triggers the rearrangement of the surface electrons and exhibits excellent electrocatalytic activity.Impressively,the hydrogen evolution reaction(HER)activity of CuBr@C is significantly better than that of commercial N-doped carbon nanotubes,surpassing commercial Pt/C at over 200 mA·cm^(−2).Density functional theory(DFT)calculations reveal that bridge Br atoms inspire aggregation of delocalized electrons on C-shell surfaces,leading to optimization of hydrogen adsorption energy.展开更多
In eukaryotic cells, initiation of protein translation is to recruit the ribosome to a specific mRNA, which is generally dependent on the 5' cap structure. However, protein translation can also be initiated in a cap-...In eukaryotic cells, initiation of protein translation is to recruit the ribosome to a specific mRNA, which is generally dependent on the 5' cap structure. However, protein translation can also be initiated in a cap-independent manner by using a cis-regulatory element termed the internal ribosome entry site (IRES). The first experimentally validated IRES was reported in the poliovirus (Pelletier and Sonenberg, 1988). Then eukaryotic cellular mRNAs were also validated to contain IRES elements.展开更多
Circular RNAs(circ RNAs),covalently closed continuous RNA loops,are generated from cognate linear RNAs through back splicing events,and alternative splicing events may generate different circ RNA isoforms at the same ...Circular RNAs(circ RNAs),covalently closed continuous RNA loops,are generated from cognate linear RNAs through back splicing events,and alternative splicing events may generate different circ RNA isoforms at the same locus.However,the challenges of reconstruction and quantification of alternatively spliced full-length circ RNAs remain unresolved.On the basis of the internal structural characteristics of circ RNAs,we developed Circ AST,a tool to assemble alternatively spliced circ RNA transcripts and estimate their expression by using multiple splice graphs.Simulation studies showed that Circ AST correctly assembled the full sequences of circ RNAs with a sensitivity of 85.63%–94.32%and a precision of 81.96%–87.55%.By assigning reads to specific isoforms,Circ AST quantified the expression of circ RNA isoforms with correlation coefficients of 0.85–0.99 between theoretical and estimated values.We evaluated Circ AST on an in-house mouse testis RNA-seq dataset with RNase R treatment for enriching circ RNAs and identified 380 circ RNAs with full-length sequences different from those of their corresponding cognate linear RNAs.RT-PCR and Sanger sequencing analyses validated 32 out of 37 randomly selected isoforms,thus further indicating the good performance of Circ AST,especially for isoforms with low abundance.We also applied Circ AST to published experimental data and observed substantial diversity in circular transcripts across samples,thus suggesting that circ RNA expression is highly regulated.Circ AST can be accessed freely at https://github--com.3pco.8686c.com/xiaofengsong/CircAST.展开更多
The rapid advancement of sequencing technologies poses challenges in managing the large volume and exponential growth of sequence data efficiently and on time.To address this issue,we present GenBase(https://ngdc.cncb...The rapid advancement of sequencing technologies poses challenges in managing the large volume and exponential growth of sequence data efficiently and on time.To address this issue,we present GenBase(https://ngdc.cncb.ac.cn/genbase),an open-access data repository that follows the International Nucleotide Sequence Database Collaboration(INSDC)data standards and structures,for efficient nucleotide sequence archiving,searching,and sharing.As a core resource within the National Genomics Data Center(NGDC)of the China National Center for Bioinformation(CNCB;https://ngdc.cncb.ac.cn),GenBase offers bilingual submission pipeline and services,as well as local submission assistance in China.GenBase also provides a unique Excel format for metadata description and feature annotation of nucleotide sequences,along with a real-time data validation system to streamline sequence submissions.As of April 23,2024,GenBase received 68,251 nucleotide sequences and 689,574 annotated protein sequences across 414 species from 2319 submissions.Out of these,63,614(93%)nucleotide sequences and 620,640(90%)annotated protein sequences have been released and are publicly accessible through GenBase’s web search system,File Transfer Protocol(FTP),and Application Programming Interface(API).Additionally,in collaboration with INSDC,GenBase has constructed an effective data exchange mechanism with GenBank and started sharing released nucleotide sequences.Furthermore,GenBase integrates all sequences from GenBank with daily updates,demonstrating its commitment to actively contributing to global sequence data management and sharing.展开更多
基金the National Natural Science Foundation of China(22279044,12034002,and 22202080)the Project for Self-Innovation Capability Construction of Jilin Province Development and Reform Commission(2021C026)+1 种基金Jilin Province Science and Technology Development Program(20210301009GX)the Fundamental Research Funds for the Central Universities.
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale.
基金supported by the National Natural Science Foundation of China(Grant Number[No.82071956])and the Clinical Research Plan of Shanghai Hospital Development Center(Grant Number[No.2020CR4065]).
文摘Glutamine metabolism(GM)plays an important role in tumor growth and proliferation.Skin cutaneous melanoma(SKCM)is a glutamine-dependent cancer.However,the molecular characteristics and action mechanism of GM on SKCM remain unclear.Therefore,we aimed to explore the effects of GM-related genes on survival,clinicopathological characteristics,and the tumor microenvironment in SKCM.In this study,682 SKCM samples were obtained from the Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO)databases.Consensus clustering was used to classify SKCM samples into distinct subtypes based on 41 GM-related genes.Differences in survival,immune infiltration,clinical characteristics,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways as well as differentially expressed genes(DEGs)between subgroups were evaluated.A prognostic model was constructed according to prognostic DEGs.Differential analyses in survival,immune infiltration,tumor microenvironment(TME),tumor mutation burden(TMB),stemness,and drug sensitivity between risk groups were conducted.We identified two distinct GM-related subtypes on SKCM and found that GM-related gene alterations were associated with survival probability,clinical features,biological function,and immune infiltration.Then a risk model based on six DEGs(IL18,SEMA6A,PAEP,TNFRSF17,AIM2,and CXCL10)was constructed and validated for predicting overall survival in SKCM patients.The results showed that the risk score was negatively correlated with CD8+T cells,activated CD4+memory T cells,M1 macrophages,andγδT cells.The group with a low-risk score was accompanied by a better survival rate with higher TME scores and lower stemness index.Moreover,the group with high-and low-risk score had a significant difference with the sensitivity of 75 drugs(p<0.001).Overall,distinct subtypes in SKCM patients based on GM-related genes were identified and the risk model was constructed,which might contribute to prognosis prediction,guide clinical therapy,and develop novel therapeutic strategies.
基金supported by the National Key R&D Program of China(2020YFA0710000)the National Natural Science Foundation of China(22122901,21902047)+1 种基金the Provincial Natural Science Foundation of Hunan(2020JJ5045,2021JJ20024,2021RC3054)the Shenzhen Science and Technology Program(JCYJ20210324140610028)。
文摘The highly selective catalytic transfer hydrogenation(CTH)of furfural(FF)to furfuryl alcohol(FOL)is a significant route of biomass valorization.Herein,a series microporous Zr-metal organic framework(ZrMOF)functionalized by sulfonic groups are prepared.Based on the comprehensive structural characterizations by means of X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),N2 physisorption,Thermogravimetric(TG)and Fourier transformed infrared spectroscopy(FTIR),we find that sulfonic acid(–SO_(3)H)functional groups are tethered on the UIO-66 without affecting the structure of the framework.Systematic characterizations(NH_(3)-TPD,CO_(2)-TPD,and in-situ FTIR)demonstrate that modifying of sulfonic groups on UIO-66 results in the formation of stronger Lewis acidic-basic and Brnsted acidis sites.The cooperative role of the versatile Lewis acidic-basic and Brnsted acidic sites in 60%mol fraction of sulfonic acid-containing UIO-66(UIO-S_(0.6))retain high surface area and exhibit excellent catalytic performance of 94.7%FOL yield and 16.9 h^(-1).turnover number(TOF)under mild conditions.Kinetic experiments reveal that the activation energy of the CTH of furfural(FF)over UIO-S_(0.6) catalyst is as low as 50.8 k J mol^(-1).Besides,the hydrogen transfer mechanism is investigated through isotope labeling experiments,exhibiting that theβ-H in isopropanol is transferred to the a-C of FF by forming six-membered intermediates on the Lewis acidic-basic and Brnsted acidic sites of the UIO-S_(0.6),which is the rate-determining step in the formation of FOL.
文摘With the gradual expansion of China's influence,the translation of tourism texts has become one of the important media for cultural exchanges between China and foreign countries.This paper adopts the translation strategies of the foreignization and domestication,studies from the perspective of the function of the tourism text,and analyzes the proper nouns,Chinese four-character words,and sentence expressions in translation practice at the vocabulary and syntactic levels.Following the vocative function and information function contained in the tourism text,this paper elaborates on the purpose of attracting tourists and promoting the communication between Chinese and Western cultures.
基金supported by the Xuzhou Key Research and Development Program(Social Development)(No.KC23298)the National Natural Science Foundation of China(No.22271122)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20211549)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2903).
文摘The efficient utilization of visible light catalysts for organic reactions necessitates not only the effective separation of photogenerated electrons and holes to participate in the reaction,but also their ability to form key intermediates with reactant molecules.The present study successfully synthesized a crusiform-like mesoporous structure of nitrogen-doped carbon-coated Cu_(2)O/Cu(Cu_(2)O/Cu/N-C)with a Cu_(2)O/dual electron acceptor interface using etched HKUST-1 as the precursor.A series of theoretical and experimental studies have demonstrated that the Cu_(2)O/Cu/N-C interface in the photocatalytic homo-coupling of terminal alkynes not only effectively enhances the separation of photogenerated electron−hole pairs,but also facilitates the formation of the key intermediate[Cu_(2)O/Cu/N-C]-phenylacetylide and promotes the rearrangement of its internal charges.As a result,the homo-coupling reaction can be effectively facilitated.The primary reason for the functional role of Cu_(2)O/Cu/N-C interface lies in the downward bending of energy band from Cu_(2)O to N-doped C layers,induced by the different work functions of Cu_(2)O,Cu and N-doped C layers.Consequently,Cu_(2)O/Cu/N-C photocatalysts demonstrate exceptional photocatalytic activity in the homo-coupling reaction of terminal alkynes under blue-light irradiation and air atmosphere.The present study presents a novel research methodology for the development of highly efficient visible light catalysts to facilitate organic reactions in future applications.
基金supported by Technological Innovation 2030 (2022ZD0401701)National Natural Science Foundation of China (32000475,32030021)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences (XDA24040201)Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y2021038).
文摘Genomic data serve as an invaluable resource for unraveling the intricacies of the higher plant systems,including the constituent elements within and among species.Through various efforts in genomic data archiving,integrative analysis and value-added curation,the National Genomics Data Center(NGDC),which is a part of the China National Center for Bioinformation(CNCB),has successfully established and currently maintains a vast amount of database resources.This dedicated initiative of the NGDC facilitates a data-rich ecosystem that greatly strengthens and supports genomic research efforts.Here,we present a comprehensive overview of central repositories dedicated to archiving,presenting,and sharing plant omics data,introduce knowledgebases focused on variants or gene-based functional insights,highlight species-specific multiple omics database resources,and briefly review the online application tools.We intend that this review can be used as a guide map for plant researchers wishing to select effective data resources from the NGDC for their specific areas of study.
基金supported by the National Key Research and Development Program of China(Nos.2018YFC0213104 and 2017YFC0210002)the National Natural Science Foundation of China(Nos.41977184,41941011,and 51778596)+5 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23020301)the Major Projects of High Resolution Earth Observation Systems of National Science and Technology(No.05-Y30B01-9001-19/20-3)the Youth Innovation Promotion Association of CAS(No.2021443),the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,CAS(CERAE202004)the China Postdoctoral Science Foundation(Nos.2020TQ0320 and 2021M693068)Anhui Provincial Natural Science Foundation(No.2108085QD178)the Fundamental Research Funds for the Central Universities.
文摘Recently,air pollution especially fine particulate matters(PM_(2.5))and ozone(O_(3))has become a severe issue in China.In this study,we first characterized the temporal trends of PM_(2.5) and O_(3) for Beijing,Guangzhou,Shanghai,andWuhan respectively during 2018-2020.The annual mean PM2.5 has decreased by 7.82%-33.92%,while O_(3) concentration showed insignificant variations by-6.77%-4.65%during 2018-2020.The generalized additive models(GAMs)were implemented to quantify the contribution of individual meteorological factors and their gas precursors on PM_(2.5) and O_(3).On a short-term perspective,GAMs modeling shows that the daily variability of PM_(2.5) concentration is largely related to the variation of precursor gases(R=0.67-0.90),while meteorological conditions mainly affect the daily variability of O_(3) concentration(R=0.65-0.80)during 2018-2020.The impact of COVID-19 lockdown on PM_(2.5) and O_(3) concentrations were also quantified by using GAMs.During the 2020 lockdown,PM_(2.5) decreased significantly for these megacities,yet the ozone concentration showed an increasing trend compared to 2019.The GAMs analysis indicated that the contribution of precursor gases to PM_(2.5) and O_(3) changes is 3-8 times higher than that of meteorological factors.In general,GAMsmodeling on air quality is helpful to the understanding and control of PM2.5 and O3 pollution in China.
基金the National Natural Science Foundation of China(Nos.51872116 and 12034002)Jilin Province Science and Technology Development Program(No.20210301009GX)+3 种基金Project for Self-innovation Capability Construction of Jilin Province Development and Reform Commission(No.2021C026)the Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,No.2017TD-09)Jilin Province Science and Technology Development Program(No.20190201233JC)the Fundamental Research Funds for the Central Universities.
文摘Modulation of the surface electron distribution is a challenging problem that determines the adsorption ability of catalytic process.Here,we address this challenge by bridging the inner and outer layers of the core–shell structure through the bridge Br atom.Carbon shell wrapped copper bromide nanorods(CuBr@C)are constructed for the first time by chemical vapour deposition with hexabromobenzene(HBB).HBB pyrolysis provides both bridge Br atom and C shells.The C shell protects the stability of the internal halide structure,while the bridge Br atom triggers the rearrangement of the surface electrons and exhibits excellent electrocatalytic activity.Impressively,the hydrogen evolution reaction(HER)activity of CuBr@C is significantly better than that of commercial N-doped carbon nanotubes,surpassing commercial Pt/C at over 200 mA·cm^(−2).Density functional theory(DFT)calculations reveal that bridge Br atoms inspire aggregation of delocalized electrons on C-shell surfaces,leading to optimization of hydrogen adsorption energy.
基金supported by the grants from National Natural Science Foundation of China (Nos. 61571223 and 61171191)
文摘In eukaryotic cells, initiation of protein translation is to recruit the ribosome to a specific mRNA, which is generally dependent on the 5' cap structure. However, protein translation can also be initiated in a cap-independent manner by using a cis-regulatory element termed the internal ribosome entry site (IRES). The first experimentally validated IRES was reported in the poliovirus (Pelletier and Sonenberg, 1988). Then eukaryotic cellular mRNAs were also validated to contain IRES elements.
基金the National Natural Science Foundation of China(Grant No.61571223)the National Key R&D Program of China(Grant No.2016YFA0503300)+4 种基金supported by the National Natural Science Foundation of China(Grant Nos.61171191,31471403,and 81771641)the 333 Project of Jiangsu Province(Grant No.BRA2016386)the Program for Distinguished Talents of Six Domains in Jiangsu Province(Grant No.YY-019)the Fundamental Research Funds for the Central Universities(Grant No.NP2018109)the Fok Ying Tung Education Foundation(Grant No.161037),China.
文摘Circular RNAs(circ RNAs),covalently closed continuous RNA loops,are generated from cognate linear RNAs through back splicing events,and alternative splicing events may generate different circ RNA isoforms at the same locus.However,the challenges of reconstruction and quantification of alternatively spliced full-length circ RNAs remain unresolved.On the basis of the internal structural characteristics of circ RNAs,we developed Circ AST,a tool to assemble alternatively spliced circ RNA transcripts and estimate their expression by using multiple splice graphs.Simulation studies showed that Circ AST correctly assembled the full sequences of circ RNAs with a sensitivity of 85.63%–94.32%and a precision of 81.96%–87.55%.By assigning reads to specific isoforms,Circ AST quantified the expression of circ RNA isoforms with correlation coefficients of 0.85–0.99 between theoretical and estimated values.We evaluated Circ AST on an in-house mouse testis RNA-seq dataset with RNase R treatment for enriching circ RNAs and identified 380 circ RNAs with full-length sequences different from those of their corresponding cognate linear RNAs.RT-PCR and Sanger sequencing analyses validated 32 out of 37 randomly selected isoforms,thus further indicating the good performance of Circ AST,especially for isoforms with low abundance.We also applied Circ AST to published experimental data and observed substantial diversity in circular transcripts across samples,thus suggesting that circ RNA expression is highly regulated.Circ AST can be accessed freely at https://github--com.3pco.8686c.com/xiaofengsong/CircAST.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB38030200)the National Key R&D Program of China(Grant No.2021YFF0703701)+2 种基金the Professional Association of the Alliance of International Science Organizations(Grant No.ANSO-PA-2023-07)the International Partnership Program of the Chinese Academy of Sciences(Grant No.161GJHZ2022002MI)the Open Biodiversity and Health Big Data Initiative of International Union of Biological Sciences(IUBS).
文摘The rapid advancement of sequencing technologies poses challenges in managing the large volume and exponential growth of sequence data efficiently and on time.To address this issue,we present GenBase(https://ngdc.cncb.ac.cn/genbase),an open-access data repository that follows the International Nucleotide Sequence Database Collaboration(INSDC)data standards and structures,for efficient nucleotide sequence archiving,searching,and sharing.As a core resource within the National Genomics Data Center(NGDC)of the China National Center for Bioinformation(CNCB;https://ngdc.cncb.ac.cn),GenBase offers bilingual submission pipeline and services,as well as local submission assistance in China.GenBase also provides a unique Excel format for metadata description and feature annotation of nucleotide sequences,along with a real-time data validation system to streamline sequence submissions.As of April 23,2024,GenBase received 68,251 nucleotide sequences and 689,574 annotated protein sequences across 414 species from 2319 submissions.Out of these,63,614(93%)nucleotide sequences and 620,640(90%)annotated protein sequences have been released and are publicly accessible through GenBase’s web search system,File Transfer Protocol(FTP),and Application Programming Interface(API).Additionally,in collaboration with INSDC,GenBase has constructed an effective data exchange mechanism with GenBank and started sharing released nucleotide sequences.Furthermore,GenBase integrates all sequences from GenBank with daily updates,demonstrating its commitment to actively contributing to global sequence data management and sharing.