Fixed-time synchronization(FTS)of delayed memristor-based neural networks(MNNs)with discontinuous activations is studied in this paper.Both continuous and discontinuous activations are considered forMNNs.And the mixed...Fixed-time synchronization(FTS)of delayed memristor-based neural networks(MNNs)with discontinuous activations is studied in this paper.Both continuous and discontinuous activations are considered forMNNs.And the mixed delays which are closer to reality are taken into the system.Besides,two kinds of control schemes are proposed,including feedback and adaptive control strategies.Based on some lemmas,mathematical inequalities and the designed controllers,a few synchronization criteria are acquired.Moreover,the upper bound of settling time(ST)which is independent of the initial values is given.Finally,the feasibility of our theory is attested by simulation examples.展开更多
基金supported by National Natural Science Foundation of China under(Grant Nos.62173175,12026235,12026234,61903170,11805091,61877033,61833005)by 111 Project under Grant B17040+2 种基金by the Natural Science Foundation of Shandong Province under Grant Nos.ZR2019BF045,ZR2019MF021,ZR2019QF004by the Project of Shandong Province Higher Educational Science and Technology Program No.J18KA354by the Key Research and Development Project of Shandong Province of China,No.2019GGX101003.
文摘Fixed-time synchronization(FTS)of delayed memristor-based neural networks(MNNs)with discontinuous activations is studied in this paper.Both continuous and discontinuous activations are considered forMNNs.And the mixed delays which are closer to reality are taken into the system.Besides,two kinds of control schemes are proposed,including feedback and adaptive control strategies.Based on some lemmas,mathematical inequalities and the designed controllers,a few synchronization criteria are acquired.Moreover,the upper bound of settling time(ST)which is independent of the initial values is given.Finally,the feasibility of our theory is attested by simulation examples.