Ecosystem services(ES)are the connection between nature and society,and are essential for the well-being of local communities that depend on them.In Ethiopia,church forests and the surrounding agricultural matrix supp...Ecosystem services(ES)are the connection between nature and society,and are essential for the well-being of local communities that depend on them.In Ethiopia,church forests and the surrounding agricultural matrix supply numerous ES.However,the ES delivered by both land use types have not yet been assessed simultaneously.Here we surveyed both church forests and their agricultural matrices,aiming to quantify,compare and unravel the drivers underlying tree-based ES supply,density and multifunctionality.We found that almost all church forests and half of the agricultural matrices provided high ES densities.ES multifunctionality was higher in the agricultural matrices,suggesting that people deliberately conserve or plant multifunctional tree species.Furthermore,the supply of all categories of ES was positively correlated with church forest age(p-value<0.001)in the agricultural matrix,while the extent of church forest was positively correlated with the density of all categories ecosystem services score in the church forests(p-value<0.001).Our results can be used to prioritize conservation efforts at sites that provide high levels of ES supply,ES density and ES multifunctionality,and to prioritize restoration efforts at sites with low levels thereof.展开更多
基金flnancial support from VLIR-UOS,Belgium through the VLIR-IUC Interuniversity cooperation with Bahir Dar University,Ethiopia (BDU-IUC)
文摘Ecosystem services(ES)are the connection between nature and society,and are essential for the well-being of local communities that depend on them.In Ethiopia,church forests and the surrounding agricultural matrix supply numerous ES.However,the ES delivered by both land use types have not yet been assessed simultaneously.Here we surveyed both church forests and their agricultural matrices,aiming to quantify,compare and unravel the drivers underlying tree-based ES supply,density and multifunctionality.We found that almost all church forests and half of the agricultural matrices provided high ES densities.ES multifunctionality was higher in the agricultural matrices,suggesting that people deliberately conserve or plant multifunctional tree species.Furthermore,the supply of all categories of ES was positively correlated with church forest age(p-value<0.001)in the agricultural matrix,while the extent of church forest was positively correlated with the density of all categories ecosystem services score in the church forests(p-value<0.001).Our results can be used to prioritize conservation efforts at sites that provide high levels of ES supply,ES density and ES multifunctionality,and to prioritize restoration efforts at sites with low levels thereof.