A gravity survey was conducted along the Mizuho traverse routes in austral summer of 1999-2000 by the 41st Japanese Antarctic Research Expedition (JARE-41). The main purpose of the survey was to obtain detail gravity ...A gravity survey was conducted along the Mizuho traverse routes in austral summer of 1999-2000 by the 41st Japanese Antarctic Research Expedition (JARE-41). The main purpose of the survey was to obtain detail gravity anomaly along the traverse routes, where deep seismic exploration was simultaneously conducted in order to obtain a fine crustal structure of the Mizuho Plateau. By using SCINTREX (CG-3M) gravity meter, the survey was carried out at 160 sites with about 1 km interval in a distance of 190 km from S16 to Z20 on the traverse routes. Free-air and Bouguer anomalies were calculated using precise locations by GPS measurements, by taking into account an effect of the thick icesheet. The furrowed negative Free-air anomalies are identified around H192, where middle points of the whole traverse routes. Two bedrock elevation models derived both by seismic refraction analyses and radio-echo sounding might correspond to the bottom and the top of a mixture layer composed from ice-moraine rocks over the bedrock surface. Thickness of the crust estimated by Bouguer anomalies is 0.5 - 1 km larger toward inland at the terminal point of Z20 along the profile.展开更多
文摘A gravity survey was conducted along the Mizuho traverse routes in austral summer of 1999-2000 by the 41st Japanese Antarctic Research Expedition (JARE-41). The main purpose of the survey was to obtain detail gravity anomaly along the traverse routes, where deep seismic exploration was simultaneously conducted in order to obtain a fine crustal structure of the Mizuho Plateau. By using SCINTREX (CG-3M) gravity meter, the survey was carried out at 160 sites with about 1 km interval in a distance of 190 km from S16 to Z20 on the traverse routes. Free-air and Bouguer anomalies were calculated using precise locations by GPS measurements, by taking into account an effect of the thick icesheet. The furrowed negative Free-air anomalies are identified around H192, where middle points of the whole traverse routes. Two bedrock elevation models derived both by seismic refraction analyses and radio-echo sounding might correspond to the bottom and the top of a mixture layer composed from ice-moraine rocks over the bedrock surface. Thickness of the crust estimated by Bouguer anomalies is 0.5 - 1 km larger toward inland at the terminal point of Z20 along the profile.