We propose an efficient measurement-driven sequential Monte Carlo multi-Bernoulli(SMC-MB) filter for multi-target filtering in the presence of clutter and missing detection. The survival and birth measurements are dis...We propose an efficient measurement-driven sequential Monte Carlo multi-Bernoulli(SMC-MB) filter for multi-target filtering in the presence of clutter and missing detection. The survival and birth measurements are distinguished from the original measurements using the gating technique. Then the survival measurements are used to update both survival and birth targets, and the birth measurements are used to update only the birth targets.Since most clutter measurements do not participate in the update step, the computing time is reduced significantly.Simulation results demonstrate that the proposed approach improves the real-time performance without degradation of filtering performance.展开更多
基金Project supported by the National Natural Science Foundationof China(Nos.61174142,61222310,and 61374021)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Nos.20120101110115 and 20130101110109)+3 种基金theZhejiang Provincial Science and Technology Planning Projects ofChina(No.2012C21044)the Marine Interdisciplinary ResearchGuiding Funds for Zhejiang University(No.2012HY009B)theFundamental Research Funds for the Central Universities(No.2014XZZX003-12)the Aeronautical Science Foundation ofChina(No.20132076002)
文摘We propose an efficient measurement-driven sequential Monte Carlo multi-Bernoulli(SMC-MB) filter for multi-target filtering in the presence of clutter and missing detection. The survival and birth measurements are distinguished from the original measurements using the gating technique. Then the survival measurements are used to update both survival and birth targets, and the birth measurements are used to update only the birth targets.Since most clutter measurements do not participate in the update step, the computing time is reduced significantly.Simulation results demonstrate that the proposed approach improves the real-time performance without degradation of filtering performance.