Pandemics have always been a nightmare for humanity,especially in developing countries.Forced lockdowns are considered one of the effective ways to deal with spreading such pandemics.Still,developing countries cannot ...Pandemics have always been a nightmare for humanity,especially in developing countries.Forced lockdowns are considered one of the effective ways to deal with spreading such pandemics.Still,developing countries cannot afford such solutions because these may severely damage the country’s econ-omy.Therefore,this study presents the proactive technological mechanisms for business organizations to run their standard business processes during pandemic-like situations smoothly.The novelty of this study is to provide a state-of-the-art solution to prevent pandemics using industrial internet of things(IIoT)and blockchain-enabled technologies.Compared to existing studies,the immutable and tamper-proof contact tracing and quarantine management solution is proposed.The use of advanced technologies and information security is a critical area for practitioners in the internet of things(IoT)and corresponding solutions.Therefore,this study also emphasizes information security,end-to-end solution,and experimental results.Firstly,a wearable wristband is proposed,incorporating 4G-enabled ultra-wideband(UWB)technology for smart contact tracing mechanisms in industries to comply with standard operating procedures outlined by the world health organization(WHO).Secondly,distributed ledger technology(DLT)omits the centralized dependency for transmitting contact tracing data.Thirdly,a privacy-preserving tracing mechanism is discussed using a public/private key cryptography-based authentication mechanism.Lastly,based on geofencing techniques,blockchain-enabled machine-to-machine(M2M)technology is proposed for quarantine management.The step-by-step methodology and test results are proposed to ensure contact tracing and quarantine management.Unlike existing research studies,the security aspect is also considered in the realm of blockchain.The practical implementation of the proposed solution also obtains the results.The results indicate the successful implementation of blockchain-enabled contact tracing and isolation management using IoT and geo-fencing techniques,which could help battle pandemic situations.Researchers can also consider the 5G-enabled narrowband internet of things(NB-IoT)technologies to implement contact tracing solutions.展开更多
Advancements in next-generation sequencer(NGS)platforms have improved NGS sequence data production and reduced the cost involved,which has resulted in the production of a large amount of genome data.The downstream ana...Advancements in next-generation sequencer(NGS)platforms have improved NGS sequence data production and reduced the cost involved,which has resulted in the production of a large amount of genome data.The downstream analysis of multiple associated sequences has become a bottleneck for the growing genomic data due to storage and space utilization issues in the domain of bioinformatics.The traditional string-matching algorithms are efficient for small sized data sequences and cannot process large amounts of data for downstream analysis.This study proposes a novel bit-parallelism algorithm called BitmapAligner to overcome the issues faced due to a large number of sequences and to improve the speed and quality of multiple sequence alignment(MSA).The input files(sequences)tested over BitmapAligner can be easily managed and organized using the Hadoop distributed file system.The proposed aligner converts the test file(the whole genome sequence)into binaries of an equal length of the sequence,line by line,before the sequence alignment processing.The Hadoop distributed file system splits the larger files into blocks,based on a defined block size,which is 128 MB by default.BitmapAligner can accurately process the sequence alignment using the bitmask approach on large-scale sequences after sorting the data.The experimental results indicate that BitmapAligner operates in real time,with a large number of sequences.Moreover,BitmapAligner achieves the exact start and end positions of the pattern sequence to test the MSA application in the whole genome query sequence.The MSA’s accuracy is verified by the bitmask indexing property of the bit-parallelism extended shifts(BXS)algorithm.The dynamic and exact approach of the BXS algorithm is implemented through the MapReduce function of Apache Hadoop.Conversely,the traditional seeds-and-extend approach faces the risk of errors while identifying the pattern sequences’positions.Moreover,the proposed model resolves the largescale data challenges that are covered through MapReduce in the Hadoop framework.Hive,Yarn,HBase,Cassandra,and many other pertinent flavors are to be used in the future for data structuring and annotations on the top layer of Hadoop since Hadoop is primarily used for data organization and handles text documents.展开更多
文摘Pandemics have always been a nightmare for humanity,especially in developing countries.Forced lockdowns are considered one of the effective ways to deal with spreading such pandemics.Still,developing countries cannot afford such solutions because these may severely damage the country’s econ-omy.Therefore,this study presents the proactive technological mechanisms for business organizations to run their standard business processes during pandemic-like situations smoothly.The novelty of this study is to provide a state-of-the-art solution to prevent pandemics using industrial internet of things(IIoT)and blockchain-enabled technologies.Compared to existing studies,the immutable and tamper-proof contact tracing and quarantine management solution is proposed.The use of advanced technologies and information security is a critical area for practitioners in the internet of things(IoT)and corresponding solutions.Therefore,this study also emphasizes information security,end-to-end solution,and experimental results.Firstly,a wearable wristband is proposed,incorporating 4G-enabled ultra-wideband(UWB)technology for smart contact tracing mechanisms in industries to comply with standard operating procedures outlined by the world health organization(WHO).Secondly,distributed ledger technology(DLT)omits the centralized dependency for transmitting contact tracing data.Thirdly,a privacy-preserving tracing mechanism is discussed using a public/private key cryptography-based authentication mechanism.Lastly,based on geofencing techniques,blockchain-enabled machine-to-machine(M2M)technology is proposed for quarantine management.The step-by-step methodology and test results are proposed to ensure contact tracing and quarantine management.Unlike existing research studies,the security aspect is also considered in the realm of blockchain.The practical implementation of the proposed solution also obtains the results.The results indicate the successful implementation of blockchain-enabled contact tracing and isolation management using IoT and geo-fencing techniques,which could help battle pandemic situations.Researchers can also consider the 5G-enabled narrowband internet of things(NB-IoT)technologies to implement contact tracing solutions.
基金This work was supported in part by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2018R1C1B5084424)in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2019R1A6A1A03032119).
文摘Advancements in next-generation sequencer(NGS)platforms have improved NGS sequence data production and reduced the cost involved,which has resulted in the production of a large amount of genome data.The downstream analysis of multiple associated sequences has become a bottleneck for the growing genomic data due to storage and space utilization issues in the domain of bioinformatics.The traditional string-matching algorithms are efficient for small sized data sequences and cannot process large amounts of data for downstream analysis.This study proposes a novel bit-parallelism algorithm called BitmapAligner to overcome the issues faced due to a large number of sequences and to improve the speed and quality of multiple sequence alignment(MSA).The input files(sequences)tested over BitmapAligner can be easily managed and organized using the Hadoop distributed file system.The proposed aligner converts the test file(the whole genome sequence)into binaries of an equal length of the sequence,line by line,before the sequence alignment processing.The Hadoop distributed file system splits the larger files into blocks,based on a defined block size,which is 128 MB by default.BitmapAligner can accurately process the sequence alignment using the bitmask approach on large-scale sequences after sorting the data.The experimental results indicate that BitmapAligner operates in real time,with a large number of sequences.Moreover,BitmapAligner achieves the exact start and end positions of the pattern sequence to test the MSA application in the whole genome query sequence.The MSA’s accuracy is verified by the bitmask indexing property of the bit-parallelism extended shifts(BXS)algorithm.The dynamic and exact approach of the BXS algorithm is implemented through the MapReduce function of Apache Hadoop.Conversely,the traditional seeds-and-extend approach faces the risk of errors while identifying the pattern sequences’positions.Moreover,the proposed model resolves the largescale data challenges that are covered through MapReduce in the Hadoop framework.Hive,Yarn,HBase,Cassandra,and many other pertinent flavors are to be used in the future for data structuring and annotations on the top layer of Hadoop since Hadoop is primarily used for data organization and handles text documents.