Management of the Pointe-Noire Forest requires high-performance tools for simulating tree and stand growth and assessing the sustainability of plantations. Modelling the dynamics of even-aged and mono-species stands i...Management of the Pointe-Noire Forest requires high-performance tools for simulating tree and stand growth and assessing the sustainability of plantations. Modelling the dynamics of even-aged and mono-species stands is a very active research topic. The approaches adopted by researchers vary according to the objectives and species considered: dendrometrical, Eco physiological or architectural. Thanks to the particular nature of these plantations and the trial set-up, it will be possible to explore the various aspects of production, clearly separating the part linked to genetics (three clones tested) from the part linked to the environment (via fertilisation) and the part associated with competition between trees (via planting densities and thinning regimes). This study will make a major contribution to the applicability of the self-thinning line and the RDI (Reineke Density Index) (Reineke, 1933) to fast-growing plantations. This research work will contribute to two points: 1) product diversification, which is a way of coping with international variations in timber markets, and 2) understanding how ecosystems function in exceptionally poor conditions, which will then enable the environmental impacts of the various recommended silvicultural itineraries to be assessed. The results obtained show that competition between trees in a stand of eucalyptus at very high density (10,000 stems/ha) and in two environments of very contrasting fertility is different depending on the clone. The decision on the date of the first thinning with a view to silviculture for timber and energy wood, which aims to ensure sustained and sustainable production of eucalyptus wood in these soils, should be taken between 12 and 14 months. The competition band is strong between 14 and 17 months, when the RDI = 0.8 is double that observed at 12 months.展开更多
The study highlights the complex dynamics governing the growth of forest stands,particularly in eucalyptus plantations in Congo.Factors such as soil fertility,planting density,clone genetics,and resource competition s...The study highlights the complex dynamics governing the growth of forest stands,particularly in eucalyptus plantations in Congo.Factors such as soil fertility,planting density,clone genetics,and resource competition significantly influence forest productivity.Thinning practices,when well implemented,help to rebalance competition among trees and maximize diameter growth.However,forest growth models,like Vanclay’s model,must be adapted to local conditions to provide more accurate and relevant predictions.Despite the progress made,questions remain about the best way to optimize forest stand management.The use of more sophisticated models that can account for the diversity of ecological conditions and management practices represents a major challenge for researchers and forest managers.展开更多
文摘Management of the Pointe-Noire Forest requires high-performance tools for simulating tree and stand growth and assessing the sustainability of plantations. Modelling the dynamics of even-aged and mono-species stands is a very active research topic. The approaches adopted by researchers vary according to the objectives and species considered: dendrometrical, Eco physiological or architectural. Thanks to the particular nature of these plantations and the trial set-up, it will be possible to explore the various aspects of production, clearly separating the part linked to genetics (three clones tested) from the part linked to the environment (via fertilisation) and the part associated with competition between trees (via planting densities and thinning regimes). This study will make a major contribution to the applicability of the self-thinning line and the RDI (Reineke Density Index) (Reineke, 1933) to fast-growing plantations. This research work will contribute to two points: 1) product diversification, which is a way of coping with international variations in timber markets, and 2) understanding how ecosystems function in exceptionally poor conditions, which will then enable the environmental impacts of the various recommended silvicultural itineraries to be assessed. The results obtained show that competition between trees in a stand of eucalyptus at very high density (10,000 stems/ha) and in two environments of very contrasting fertility is different depending on the clone. The decision on the date of the first thinning with a view to silviculture for timber and energy wood, which aims to ensure sustained and sustainable production of eucalyptus wood in these soils, should be taken between 12 and 14 months. The competition band is strong between 14 and 17 months, when the RDI = 0.8 is double that observed at 12 months.
文摘The study highlights the complex dynamics governing the growth of forest stands,particularly in eucalyptus plantations in Congo.Factors such as soil fertility,planting density,clone genetics,and resource competition significantly influence forest productivity.Thinning practices,when well implemented,help to rebalance competition among trees and maximize diameter growth.However,forest growth models,like Vanclay’s model,must be adapted to local conditions to provide more accurate and relevant predictions.Despite the progress made,questions remain about the best way to optimize forest stand management.The use of more sophisticated models that can account for the diversity of ecological conditions and management practices represents a major challenge for researchers and forest managers.