期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Susceptibility of dairy cows to subacute ruminal acidosis is reflected in both prepartum and postpartum bacteria as well as odd-and branched-chain fatty acids in feces 被引量:1
1
作者 Hong Yang Stijn Heirbaut +4 位作者 Xiaoping Jing Nympha De Neve Leen Vandaele Jeyamalar Jeyanathan veerle fievez 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第1期229-243,共15页
Background:The transition period is a challenging period for high-producing dairy cattle.Cows in early lactation are considered as a group at risk of subacute ruminal acidosis(SARA).Variability in SARA susceptibility ... Background:The transition period is a challenging period for high-producing dairy cattle.Cows in early lactation are considered as a group at risk of subacute ruminal acidosis(SARA).Variability in SARA susceptibility in early lactation is hypothesized to be reflected in fecal characteristics such as fecal pH,dry matter content,volatile and odd-and branched-chain fatty acids(VFA and OBCFA,respectively),as well as fecal microbiota.This was investigated with 38 periparturient dairy cows,which were classified into four groups differing in median and mean time of reticular pH below 6 as well as area under the curve of pH below 6.Furthermore,we investigated whether fecal differences were already obvious during a period prior to the SARA risk(prepartum).Results:Variation in reticular pH during a 3-week postpartum period was not associated with differences in fecal pH and VFA concentration.In the postpartum period,the copy number of fecal bacteria and methanogens of unsusceptible(UN)cows was higher than moderately susceptible(MS)or susceptible(SU)cows,while the genera Ruminococcus and Prevotellacea_UCG-001 were proportionally less abundant in UN compared with SU cows.Nevertheless,only a minor reduction was observed in iso-BCFA proportions in fecal fatty acids of SU cows,particularly iso-C15:0and iso-C16:0,compared with UN cows.Consistent with the bacterial changes postpartum,the lower abundance of Ruminococcus was already observed in the prepartum fecal bacterial communities of UN cows,whereas Lachnospiraceae_UCG-001 was increased.Nevertheless,no differences were observed in the prepartum fecal VFA or OBCFA profiles among the groups.Prepartum fecal bacterial communities of cows were clustered into two distinct clusters with 70%of the SU cows belonging to cluster 1,in which they represented 60%of the animals.Conclusions:Inter-animal variation in postpartum SARA susceptibility was reflected in post-and prepartum fecal bacterial communities.Differences in prepartum fecal bacterial communities could alert for susceptibility to develop SARA postpartum.Our results generated knowledge on the association between fecal bacteria and SARA development which could be further explored in a prevention strategy. 展开更多
关键词 Fecal bacterial community Fecal odd-and branched-chain fatty acids Inter-animal variation Subacute ruminal acidosis
下载PDF
Dose and time response of ruminally infused algae on rumen fermentation characteristics,biohydrogenation and Butyrivibrio group bacteria in goats 被引量:1
2
作者 Honglong Zhu veerle fievez +2 位作者 Shengyong Mao Wenbo He Weiyun Zhu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2016年第4期532-543,共12页
Background: Micro-algae could inhibit the complete rumen BH of dietary 18-carbon unsaturated fatty acid (UFAs). This study aimed to examine dose and time responses of algae supplementation on rumen fermentation, bi... Background: Micro-algae could inhibit the complete rumen BH of dietary 18-carbon unsaturated fatty acid (UFAs). This study aimed to examine dose and time responses of algae supplementation on rumen fermentation, biohydrogenation and Butyrivibrio group bacteria in goats. Methods: Six goats were used in a repeated 3 x 3 Latin square design, and offered a fixed diet. Algae were infused through rumen cannule with 0 (Control), 6.1 (L-AIg), or 18.3 g (H-AIg) per day. Rumen contents were sampled on d 0, 3, 7, 14 and 20. Results: H-AIg reduced total volatile fatty acid concentration and acetate molar proportion (P 〈 0.05), and increased propionate molar proportion (P 〈 0.05), whereas L-AIg had no effect on rumen fermentation. Changes in proportions of acetate and propionate in H-AIg were obvious from d 7 onwards and reached the largest differences with the control on d 14. Algae induced a dose-dependent decrease in 18:0 and increased trons-18:1 in the ruminal content (P 〈 0.05). H-AIg increased the concentrations of t9, t] 1-18:2 and tl 1, cl 5-18:2 (P 〈 0.05). L-AIg only seemed to induce a transient change in 18-carbon isomers, while H-AIg induced a rapid elevation, already obvious on d 3, concentrations of these fatty acid rose in some cases again on d 20. Algae had no effect on the abundances of Butyrivibfio spp. and Butyrivibrio proteoclosdcus (P 〉 0.10), while H-AIg reduced the total bacteria abundance (P 〈 0.05). However, this was induced by a significant difference between control and H-AIg on d 14 (-4.43 %). Afterwards, both treatments did not differ as increased variation in the H-AIg repetitions, with in some cases a return of the bacterial abundance to the basal level (d 0). Conclusions: Changes in rumen fermentation and 18-carbon UFAs metabolism in response to algae were related to the supplementation level, but there was no evidence of shift in ruminal biohydrogenation pathways towards t1 0-18:1 L-AIg mainly induced a transient effect on rumen biohydrogenation of 18-carbon UFAs, while H-AIg showed an acute inhibition and these effects were not associated with the known hydrogenating bacteria. 展开更多
关键词 ALGAE BIOHYDROGENATION GOAT Hydrogenating bacteria
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部