期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Q-Learning-Based Pesticide Contamination Prediction in Vegetables and Fruits 被引量:1
1
作者 Kandasamy Sellamuthu vishnu kumar kaliappan 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期715-736,共22页
Pesticides have become more necessary in modern agricultural production.However,these pesticides have an unforeseeable long-term impact on people's wellbeing as well as the ecosystem.Due to a shortage of basic pes... Pesticides have become more necessary in modern agricultural production.However,these pesticides have an unforeseeable long-term impact on people's wellbeing as well as the ecosystem.Due to a shortage of basic pesticide exposure awareness,farmers typically utilize pesticides extremely close to harvesting.Pesticide residues within foods,particularly fruits as well as veggies,are a significant issue among farmers,merchants,and particularly consumers.The residual concentrations were far lower than these maximal allowable limits,with only a few surpassing the restrictions for such pesticides in food.There is an obligation to provide a warning about this amount of pesticide use in farming.Previous technologies failed to forecast the large number of pesticides that were dangerous to people,necessitating the development of improved detection and early warning systems.A novel methodology for verifying the status and evaluating the level of pesticides in regularly consumed veggies as well as fruits has been identified,named as the Hybrid Chronic Multi-Residual Framework(HCMF),in which the harmful level of used pesticide residues has been predicted for contamination in agro products using Q-Learning based Recurrent Neural Network and the predicted contamination levels have been analyzed using Complex Event Processing(CEP)by processing given spatial and sequential data.The analysis results are used to minimize and effectively use pesticides in the agricultural field and also ensure the safety of farmers and consumers.Overall,the technique is carried out in a Python environment,with the results showing that the proposed model has a 98.57%accuracy and a training loss of 0.30. 展开更多
关键词 Pesticide contamination complex event processing recurrent neural network Q learning multi residual level and contamination level
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部