In this study,a two-step method was used to synthesize highly luminescent AgGaS/ZnS/ZnS quantum dots(QDs).In the first step,an inner ZnS shell was formed via a one-pot method,which resulted in a smaller lattice mismat...In this study,a two-step method was used to synthesize highly luminescent AgGaS/ZnS/ZnS quantum dots(QDs).In the first step,an inner ZnS shell was formed via a one-pot method,which resulted in a smaller lattice mismatch between the AgGaS core and the outer ZnS shell,thereby facilitating the formation of a thick outer shell.After the two-step shelling process,the synthesized AgGaS/ZnS/ZnS QDs showed an excellent photoluminescence quantum yield(PLQY)of 96.4%with a peak wavelength of 508 nm,repre-senting the highest PLQY reported thus far for AgGaS QDs.Furthermore,the effect of halogen ions in Zn precursors on the shelling process was investigated.It was proposed that the capacity of halogen ions to coordinate with the QDs influenced the balance between Zn cation diffusion and ZnS shelling reaction.Specifically,the ZnS shelling reaction was dominant when ZnCl_(2)was employed,while Zn cation diffusion was the dominant process under the I^(−)-rich environment.This work provides insights into the interfacial restructuring during the ZnS shelling and offers a clear map for the tailored synthesis of core/shell QDs.展开更多
The hot corrosion behavior of the NiAl coating and the 5Hf-NiAl coating induced by mixed salt at 900℃was investigated.Comparing with the NiAl coating,the 5Hf-NiAl coating exhibited superior hot corrosion resistance b...The hot corrosion behavior of the NiAl coating and the 5Hf-NiAl coating induced by mixed salt at 900℃was investigated.Comparing with the NiAl coating,the 5Hf-NiAl coating exhibited superior hot corrosion resistance because the addition of Hf promoted the formation of protective oxide scale and reduced the growth rate of oxide scale.Therefore,internal sulfides were not present in the 5Hf-NiAl coating after hot corrosion for 140 h.Cr exhibited different distribution in the two coatings since the addition of Hf changed the hot corrosion process of the coating.Hf and Ti in the 5Hf-NiAl coating trapped and captured sulfur,preventing the penetration of sulfur into the coating.The hot corrosion mechanism of the two coating and the effects of Hf on this process were discussed in this work.展开更多
In this paper, we proposed a way to realize an Er-doped random fiber laser(RFL) with a disordered fiber Bragg grating(FBG) array, as well as to control the lasing mode of the RFL by heating specific locations of the d...In this paper, we proposed a way to realize an Er-doped random fiber laser(RFL) with a disordered fiber Bragg grating(FBG) array, as well as to control the lasing mode of the RFL by heating specific locations of the disordered FBG array. The disordered FBG array performs as both the gain medium and random distributed reflectors, which together with a tunable point reflector form the RFL. Coherent multi-mode random lasing is obtained with a threshold of between 7.5 and 10 mW and a power efficiency between 23% and 27% when the reflectivity of the point reflector changes from 4% to 50%. To control the lasing mode of random emission, a specific point of the disordered FBG array is heated so as to shift the wavelength of the FBG(s) at this point away from the other FBGs.Thus, different resonance cavities are formed, and the lasing mode can be controlled by changing the location of the heating point.展开更多
An AlSiY coating and two MCrAlY+AlSiY composite coatings with different thickness of MCrAlY interlayer were prepared by arc ion plating(AIP)and vacuum annealing.The isothermal oxidation behavior of coatings at 1100℃ ...An AlSiY coating and two MCrAlY+AlSiY composite coatings with different thickness of MCrAlY interlayer were prepared by arc ion plating(AIP)and vacuum annealing.The isothermal oxidation behavior of coatings at 1100℃ for 300 h was also investigated to characterize the microstructure evolution of coatings during annealing.The composite coatings exhibited a better high-temperature oxidation resistance at 1100℃ .The reason is that the addition of MCrAlY layer can greatly contribute to prevent the diffusion of refractory elements to the outer layer.The inhibition of Al inward diffusion can be much stronger,as the Si content increases in the outer layer during annealing.展开更多
A graphene-coated microfiber(GCM)-based hybrid waveguide structure formed by wrapping monolayer graphene around a microfiber with length of several millimeters is pumped by a nanosecond laser at ~1550 nm, and multiord...A graphene-coated microfiber(GCM)-based hybrid waveguide structure formed by wrapping monolayer graphene around a microfiber with length of several millimeters is pumped by a nanosecond laser at ~1550 nm, and multiorder cascaded four-wave-mixing(FWM) is effectively generated. By optimizing both the detuning and the pump power, such a GCM device with high nonlinearity and compact size would have potential for a wide range of FWM applications, such as phase-sensitive amplification, multi-wavelength filter, all-optical regeneration and frequency conversion, and so on.展开更多
基金supported by the National Natural Science Foun-dation of China(No.62074044)Zhongshan-Fudan Joint Innova-tion Center,Jihua Laboratory Projects of Guangdong Province(No.X190111UZ190)+1 种基金Shanghai Post-doctoral Excellence Program(No.2021016)Shanghai Rising-Star program(No.22YF1402000).
文摘In this study,a two-step method was used to synthesize highly luminescent AgGaS/ZnS/ZnS quantum dots(QDs).In the first step,an inner ZnS shell was formed via a one-pot method,which resulted in a smaller lattice mismatch between the AgGaS core and the outer ZnS shell,thereby facilitating the formation of a thick outer shell.After the two-step shelling process,the synthesized AgGaS/ZnS/ZnS QDs showed an excellent photoluminescence quantum yield(PLQY)of 96.4%with a peak wavelength of 508 nm,repre-senting the highest PLQY reported thus far for AgGaS QDs.Furthermore,the effect of halogen ions in Zn precursors on the shelling process was investigated.It was proposed that the capacity of halogen ions to coordinate with the QDs influenced the balance between Zn cation diffusion and ZnS shelling reaction.Specifically,the ZnS shelling reaction was dominant when ZnCl_(2)was employed,while Zn cation diffusion was the dominant process under the I^(−)-rich environment.This work provides insights into the interfacial restructuring during the ZnS shelling and offers a clear map for the tailored synthesis of core/shell QDs.
基金This work was supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-2-2)the Science Center for Gas Turbine Project(P2021-A-IV-002-003)+2 种基金the IMR Innovation Fund(2022-PY17)the Basic Research Project of Science,the Education and Industry Integration Pilot Project for Qilu University of Technology(Shandong Academy of Sciences)(2022PY063)the National Natural Science Foundation of China(No.5227011470).
文摘The hot corrosion behavior of the NiAl coating and the 5Hf-NiAl coating induced by mixed salt at 900℃was investigated.Comparing with the NiAl coating,the 5Hf-NiAl coating exhibited superior hot corrosion resistance because the addition of Hf promoted the formation of protective oxide scale and reduced the growth rate of oxide scale.Therefore,internal sulfides were not present in the 5Hf-NiAl coating after hot corrosion for 140 h.Cr exhibited different distribution in the two coatings since the addition of Hf changed the hot corrosion process of the coating.Hf and Ti in the 5Hf-NiAl coating trapped and captured sulfur,preventing the penetration of sulfur into the coating.The hot corrosion mechanism of the two coating and the effects of Hf on this process were discussed in this work.
基金supported in part by the National Natural Science Foundation of China under Grants 61575040 and 61106045the PCSIRT under Grant IRT1218+1 种基金the 111 Project under Grant B14039the open research fund of Jiangsu Key Laboratory for Advanced Optical Manufacturing Technologies under Grant KJS1402
文摘In this paper, we proposed a way to realize an Er-doped random fiber laser(RFL) with a disordered fiber Bragg grating(FBG) array, as well as to control the lasing mode of the RFL by heating specific locations of the disordered FBG array. The disordered FBG array performs as both the gain medium and random distributed reflectors, which together with a tunable point reflector form the RFL. Coherent multi-mode random lasing is obtained with a threshold of between 7.5 and 10 mW and a power efficiency between 23% and 27% when the reflectivity of the point reflector changes from 4% to 50%. To control the lasing mode of random emission, a specific point of the disordered FBG array is heated so as to shift the wavelength of the FBG(s) at this point away from the other FBGs.Thus, different resonance cavities are formed, and the lasing mode can be controlled by changing the location of the heating point.
基金supported by the Tianjin Major Science and Technology Project of Military-Civil Integration(No.18ZXJMTG00050)National Science and Technology Major Project under Grant(No.2017-VI-0002-0072)the National Natural Science Foundation of China(No.52001177)。
文摘An AlSiY coating and two MCrAlY+AlSiY composite coatings with different thickness of MCrAlY interlayer were prepared by arc ion plating(AIP)and vacuum annealing.The isothermal oxidation behavior of coatings at 1100℃ for 300 h was also investigated to characterize the microstructure evolution of coatings during annealing.The composite coatings exhibited a better high-temperature oxidation resistance at 1100℃ .The reason is that the addition of MCrAlY layer can greatly contribute to prevent the diffusion of refractory elements to the outer layer.The inhibition of Al inward diffusion can be much stronger,as the Si content increases in the outer layer during annealing.
基金supported by National Natural Science Foundation of China under Grants 61290312, 61107072, 61107073, and 61475032supported by Program for Changjiang Scholars and Innovative Research Team in Universities of China (PCSIRT)the “111 Project” of China Education Ministry
文摘A graphene-coated microfiber(GCM)-based hybrid waveguide structure formed by wrapping monolayer graphene around a microfiber with length of several millimeters is pumped by a nanosecond laser at ~1550 nm, and multiorder cascaded four-wave-mixing(FWM) is effectively generated. By optimizing both the detuning and the pump power, such a GCM device with high nonlinearity and compact size would have potential for a wide range of FWM applications, such as phase-sensitive amplification, multi-wavelength filter, all-optical regeneration and frequency conversion, and so on.