This study aims to investigate the effect of the 1-step quenching and partitioning (Q&P) process on the microstructure and the resulting Vicker' s hardness of 0.3C-1.5Si-1.5Mn steel by using in-situ dilatometry ,o...This study aims to investigate the effect of the 1-step quenching and partitioning (Q&P) process on the microstructure and the resulting Vicker' s hardness of 0.3C-1.5Si-1.5Mn steel by using in-situ dilatometry ,optical microscopy ( OM ), scanning electron microscopy ( SEM ), X-ray diffractometry ( XRD ), and Vicker ' s hardness measurement. Systematic analyses indicate that the microstructure of the specimens quenched and partitioned at 150℃ ,200 ℃ ,250℃ ,and 300℃ mainly comprises lath martensite and retained austenite. The dilatometry curve of the specimen partitioned at 150℃ is presumably ascribed to the formation of isothermal martensite. In the early stages of partitioning at 200℃,the nearly unchanged dilatation curve is closely related to the synergistic effect of isothermal martensite formation and transitional epsilon carbide precipitation. In the later stages of partitioning at 200 ℃ ,the slight increase in the dilatation curve is due to the continuous isothermal martensite formation. With further increase in partitioning temperature to 250℃, the dilatation increases gradually up to 3600 s, which is related to carbon partitioning and lower bainite formation. Partitioning at a higher temperature of 300 ℃ causes a rapid increase in the dilatation curve during the initial stages, which subsequently levels off upon prolonging the partitioning time. This is mainly attributed to the rapid diffusion of carbon from athermal martensite to retained austenite and continuous formation of lower bainite.展开更多
A new 980 MPa advanced high-strength steel(AHSS) with excellent bendability and flangeability has been studied and industrially produced, typical of tensile strength, fractured elongation, and hole expansion ratio(HER...A new 980 MPa advanced high-strength steel(AHSS) with excellent bendability and flangeability has been studied and industrially produced, typical of tensile strength, fractured elongation, and hole expansion ratio(HER) exceeding 980 MPa, 10%,and 30%,respectively.The 90° V-type bending perpendicular to the rolling direction can satisfy the R/t=1.0 requirement, indicating excellent bendability.Systematic evaluations of industrial trial-produced 980 MPa hot-rolled AHSS have been conducted, including microstructure, tensile properties in three directions, HER,bendability, fatigue limit strength, and forming limit.The microstructure of the newly developed 980 MPa AHSS primarily consists of fine bainite and a small amount of martensite-austenite constituent.The practical yield and tensile strength are higher than 800 and 980 MPa, respectively, with typical elongation of 13% and HER of around 40%.The good combination of the newly developed 980 MPa AHSS is primarily attributed to the fine bainitic microstructure, resulting in excellent flangeability and bendability.In addition, the newly developed 980 MPa AHSS has good fatigue and forming properties, making it suitable for the production of chassis and suspension components.展开更多
The effects of cooling rate and coiling temperature on microstructure and mechanical properties of a plain carbon steel were investigated by combining metallography and tensile experiments. The results indicate that f...The effects of cooling rate and coiling temperature on microstructure and mechanical properties of a plain carbon steel were investigated by combining metallography and tensile experiments. The results indicate that ferrite grain size is refined and bainite transformation occurs to ensure high strength and elongation, as the cooling rate is quick enough. Yield strength and tensite strength improve with the decreased finish cooling temperature, but the elongation decreases too significantly to meet the requirements. Thus, the cooling rate must be quick enough, and the appropriate coiling temperature should be carefully selected to obtain refined ferrite and a small amount of bainite to improve the strength while the plasticity is also ensured. Under this condition, the Mn element concentration can be reduced to save cost or produce higher strength steel with same chemical composition.展开更多
The effect of tempering temperature on the microstrocture and precipitating evolution and the resultant mechanical properties of newly developed high-strength microalloyed steel plate was investigated by optical micro...The effect of tempering temperature on the microstrocture and precipitating evolution and the resultant mechanical properties of newly developed high-strength microalloyed steel plate was investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The steel mainly consists of fine lath martensite and lower bainite. The width of the martensitic laths in as-hot-rolled state is about 120 nm,and increases from 120 nm to 150 nm and 180 nm after tempering at 200 ℃ and 250℃ for 2 h respectively with no change in its morphology. Of special interest is the phenomenon that both tensile strength and impact toughness of the steel plate decrease with the increase of the tempering temperature, which might be attributed to the combination of lath martensite broadening and the coarsening of needle-like carbides located on the boundaries of lath martensite and within bainitic ferrite. It is suggested that the existence of the complex carbonitride larger than 100 nm in bainitic ferrite is one of the reasons.展开更多
The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basi...The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basis of microstructural characterization and mechanical property tests. The patenting treatment of high-carbon hot- rolled strip and its application in springs were discussed.展开更多
This paper explores the development of a 780 MPa hot-rolled high-strength steel with an ultra-high hole expansion ratio(HER) by using a nanoprecipitation-controlled technology.Systematic analysis and evaluation of an ...This paper explores the development of a 780 MPa hot-rolled high-strength steel with an ultra-high hole expansion ratio(HER) by using a nanoprecipitation-controlled technology.Systematic analysis and evaluation of an industrially produced steel sheet have been performed to investigate the microstructure, nanoprecipitates, tensile properties, HER,bendability, and forming limit diagram.The newly developed 780 MPa hot-rolled high-strength steel sheet is composed of a fully ferritic microstructure of approximately 5 μm with precipitates of approximately 4-5 nm in ferrite grain interiors.The yield strength and tensile strength can reach above 700 and 780 MPa, respectively.Moreover, the fractured elongation is higher than 19% in the transversal direction, and the average HER exceeds 70%.Furthermore, the newly developed 780 MPa high-strength steel has good bendability reaching R/t=0.2 at 90°.Compared with the conventional 780 MPa high-strength steel, the newly developed 780 MPa high-strength steel exhibits superior forming ability, which is suitable for the production of complex components.High-cycle fatigue indicates that the fatigue limit of the newly developed high-strength steel is 430 MPa under a stress ratio of r=-1,indicating good fatigue properties.The excellent combined mechanical properties of the newly developed 780 MPa high-strength steel are attributed to the grain-refined ferritic microstructure with nanoprecipitates in ferrite grain interiors.展开更多
With scanning electron microscope (SEM), the surface morphology of phase boundary sliding (PBS) in superplastic deformation (SPD) of Zn-Al alloy and the diffusion behavior of Zn, Al interfaces in their powers’ sinter...With scanning electron microscope (SEM), the surface morphology of phase boundary sliding (PBS) in superplastic deformation (SPD) of Zn-Al alloy and the diffusion behavior of Zn, Al interfaces in their powers’ sintering have been investigated. The results show that Zn-Al eutec-toid microstructure can be achieved through their powders’ sintering, and the diffusion characteristic between Zn and Al is just a demonstration of Kirkendall effect, in which Zn can dissolve into Al whereas Al can hardly dissolve into Zn. During sintering, a diffusion-solution zone a’ has formed and subsequently transformed into a eutectoid microstructure in the cooling process. The superplastic deformation mechanism of Zn-Al eutectic alloy is phase boundary sliding which is controlled by the diffusion-solution zone α’. If the diffusion-solution zone α’ is unsaturated, it will have much more crystal defects and the combination between α’ and phase P is weak, thus the process of phase boundary sliding becomes easily; on the展开更多
文摘This study aims to investigate the effect of the 1-step quenching and partitioning (Q&P) process on the microstructure and the resulting Vicker' s hardness of 0.3C-1.5Si-1.5Mn steel by using in-situ dilatometry ,optical microscopy ( OM ), scanning electron microscopy ( SEM ), X-ray diffractometry ( XRD ), and Vicker ' s hardness measurement. Systematic analyses indicate that the microstructure of the specimens quenched and partitioned at 150℃ ,200 ℃ ,250℃ ,and 300℃ mainly comprises lath martensite and retained austenite. The dilatometry curve of the specimen partitioned at 150℃ is presumably ascribed to the formation of isothermal martensite. In the early stages of partitioning at 200℃,the nearly unchanged dilatation curve is closely related to the synergistic effect of isothermal martensite formation and transitional epsilon carbide precipitation. In the later stages of partitioning at 200 ℃ ,the slight increase in the dilatation curve is due to the continuous isothermal martensite formation. With further increase in partitioning temperature to 250℃, the dilatation increases gradually up to 3600 s, which is related to carbon partitioning and lower bainite formation. Partitioning at a higher temperature of 300 ℃ causes a rapid increase in the dilatation curve during the initial stages, which subsequently levels off upon prolonging the partitioning time. This is mainly attributed to the rapid diffusion of carbon from athermal martensite to retained austenite and continuous formation of lower bainite.
文摘A new 980 MPa advanced high-strength steel(AHSS) with excellent bendability and flangeability has been studied and industrially produced, typical of tensile strength, fractured elongation, and hole expansion ratio(HER) exceeding 980 MPa, 10%,and 30%,respectively.The 90° V-type bending perpendicular to the rolling direction can satisfy the R/t=1.0 requirement, indicating excellent bendability.Systematic evaluations of industrial trial-produced 980 MPa hot-rolled AHSS have been conducted, including microstructure, tensile properties in three directions, HER,bendability, fatigue limit strength, and forming limit.The microstructure of the newly developed 980 MPa AHSS primarily consists of fine bainite and a small amount of martensite-austenite constituent.The practical yield and tensile strength are higher than 800 and 980 MPa, respectively, with typical elongation of 13% and HER of around 40%.The good combination of the newly developed 980 MPa AHSS is primarily attributed to the fine bainitic microstructure, resulting in excellent flangeability and bendability.In addition, the newly developed 980 MPa AHSS has good fatigue and forming properties, making it suitable for the production of chassis and suspension components.
文摘The effects of cooling rate and coiling temperature on microstructure and mechanical properties of a plain carbon steel were investigated by combining metallography and tensile experiments. The results indicate that ferrite grain size is refined and bainite transformation occurs to ensure high strength and elongation, as the cooling rate is quick enough. Yield strength and tensite strength improve with the decreased finish cooling temperature, but the elongation decreases too significantly to meet the requirements. Thus, the cooling rate must be quick enough, and the appropriate coiling temperature should be carefully selected to obtain refined ferrite and a small amount of bainite to improve the strength while the plasticity is also ensured. Under this condition, the Mn element concentration can be reduced to save cost or produce higher strength steel with same chemical composition.
文摘The effect of tempering temperature on the microstrocture and precipitating evolution and the resultant mechanical properties of newly developed high-strength microalloyed steel plate was investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The steel mainly consists of fine lath martensite and lower bainite. The width of the martensitic laths in as-hot-rolled state is about 120 nm,and increases from 120 nm to 150 nm and 180 nm after tempering at 200 ℃ and 250℃ for 2 h respectively with no change in its morphology. Of special interest is the phenomenon that both tensile strength and impact toughness of the steel plate decrease with the increase of the tempering temperature, which might be attributed to the combination of lath martensite broadening and the coarsening of needle-like carbides located on the boundaries of lath martensite and within bainitic ferrite. It is suggested that the existence of the complex carbonitride larger than 100 nm in bainitic ferrite is one of the reasons.
文摘The patenting process of three hot-rolled steels with carbon mass contents of 0.70%-0. 90% was studied. The effect of the quenching temperature on the cementite lamellar distance in the steel was evaluated on the basis of microstructural characterization and mechanical property tests. The patenting treatment of high-carbon hot- rolled strip and its application in springs were discussed.
文摘This paper explores the development of a 780 MPa hot-rolled high-strength steel with an ultra-high hole expansion ratio(HER) by using a nanoprecipitation-controlled technology.Systematic analysis and evaluation of an industrially produced steel sheet have been performed to investigate the microstructure, nanoprecipitates, tensile properties, HER,bendability, and forming limit diagram.The newly developed 780 MPa hot-rolled high-strength steel sheet is composed of a fully ferritic microstructure of approximately 5 μm with precipitates of approximately 4-5 nm in ferrite grain interiors.The yield strength and tensile strength can reach above 700 and 780 MPa, respectively.Moreover, the fractured elongation is higher than 19% in the transversal direction, and the average HER exceeds 70%.Furthermore, the newly developed 780 MPa high-strength steel has good bendability reaching R/t=0.2 at 90°.Compared with the conventional 780 MPa high-strength steel, the newly developed 780 MPa high-strength steel exhibits superior forming ability, which is suitable for the production of complex components.High-cycle fatigue indicates that the fatigue limit of the newly developed high-strength steel is 430 MPa under a stress ratio of r=-1,indicating good fatigue properties.The excellent combined mechanical properties of the newly developed 780 MPa high-strength steel are attributed to the grain-refined ferritic microstructure with nanoprecipitates in ferrite grain interiors.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 59871031 and 59871025).
文摘With scanning electron microscope (SEM), the surface morphology of phase boundary sliding (PBS) in superplastic deformation (SPD) of Zn-Al alloy and the diffusion behavior of Zn, Al interfaces in their powers’ sintering have been investigated. The results show that Zn-Al eutec-toid microstructure can be achieved through their powders’ sintering, and the diffusion characteristic between Zn and Al is just a demonstration of Kirkendall effect, in which Zn can dissolve into Al whereas Al can hardly dissolve into Zn. During sintering, a diffusion-solution zone a’ has formed and subsequently transformed into a eutectoid microstructure in the cooling process. The superplastic deformation mechanism of Zn-Al eutectic alloy is phase boundary sliding which is controlled by the diffusion-solution zone α’. If the diffusion-solution zone α’ is unsaturated, it will have much more crystal defects and the combination between α’ and phase P is weak, thus the process of phase boundary sliding becomes easily; on the