In this paper,we study the large time behavior of solutions to a class of fast diffusion equations with nonlinear boundary sources on the exterior domain of the unit ball.We are interested in the critical global expon...In this paper,we study the large time behavior of solutions to a class of fast diffusion equations with nonlinear boundary sources on the exterior domain of the unit ball.We are interested in the critical global exponent q_o and the critical Fujita exponent q_c for the problem considered,and show that q_o=q_c for the multidimensional Non-Newtonian polytropic filtration equation with nonlinear boundary sources,which is quite different from the known results that q_o〈q_c for the onedimensional case;moreover,the value is different from the slow case.展开更多
基金The Fundamental Research Funds for the Central Universities and the NSF(11071100) of China
文摘In this paper,we study the large time behavior of solutions to a class of fast diffusion equations with nonlinear boundary sources on the exterior domain of the unit ball.We are interested in the critical global exponent q_o and the critical Fujita exponent q_c for the problem considered,and show that q_o=q_c for the multidimensional Non-Newtonian polytropic filtration equation with nonlinear boundary sources,which is quite different from the known results that q_o〈q_c for the onedimensional case;moreover,the value is different from the slow case.