We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory,...We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory, is called depth imaging and is investigated in this paper. The results show that limited-view scanning causes the reconstructed intensity of deep absorbers to be weaker than that of shallow ones and that deep absorbers will be invisible if the scanning range is too small. The concept of effective scanning angle is proposed to analyse that phenomenon. We find that an effective scanning angle can well predict the relationship between scanning angle and the intensity ratio of absorbers. In addition, limited-view scanning is employed to improve image quality.展开更多
Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield. To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the di...Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield. To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the disease. In this study, soybean proteins were extracted from the first trifoliolates infected by predominant P. sojae race 1 and analyzed by twodimensional gel electrophoresis. Nineteen differently-expressed protein spots were detected, and 10 of them were further applied for Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry Assay. One protein containing a dirigent (DIR) domain was identified and belonged to the DIR-b/d family. Therefore, it was named as GmDRR1 (Glycine max Disease Resistance Response 1). Then, GmDRR1 gene was pathologically confirmed to be involved in the resistant to P. sojae in soybean. GmDRR1-GFP (green fluorescent protein) fusion proteins localized in the cell membrane. qRTPCR results showed GmDRR1 gene expressed differently in P. sojae resistant- and susceptible-soybean cultivars. By the promoter analysis, we found a haplotype H8 was existing in most resistant soybean varieties, while a haplotype H77 was existing in most susceptible soybean varieties. The H77 haplotype had seven SNPs (C to A, G to C, C to A, T to A, T to C, T to C, and T to A) and two single nucleotide insertions. The results supported that the expression difference of GmDRR1 genes between P. sojae resistant- and susceptible-soybean cultivars might depend on the GmDRR1 promoter SNPs. The results suggested that GmDRR1 was a dirigent protein involved in soybean resistant to P. sojae and paved a novel way for investigation of the molecular regulatory mechanism of the defense response to P. sojae in soybean.展开更多
基金Project supported by the National Basic Research Program of China(Grant No.2012CB921504)the National Natural Science Foundation of China(Grant Nos.10874088,10904069,and 11028408)the Natural Science Foundation of Jiangsu Province,China(Grant No.SBK201021985)
文摘We study the influence of limited-view scanning on the depth imaging of photoacoustic tomography. The situation, in which absorbers are located at different depths with respect to the limited-view scanning trajectory, is called depth imaging and is investigated in this paper. The results show that limited-view scanning causes the reconstructed intensity of deep absorbers to be weaker than that of shallow ones and that deep absorbers will be invisible if the scanning range is too small. The concept of effective scanning angle is proposed to analyse that phenomenon. We find that an effective scanning angle can well predict the relationship between scanning angle and the intensity ratio of absorbers. In addition, limited-view scanning is employed to improve image quality.
基金financially supported by the Academic Skeleton Support Plan of Department of Education of Heilongjiang Province,China (1254G011)the National Natural Science Foundation of China (31271747,31471516,31400074,31401465,31501332)+3 种基金the National High-Tech R&D Program of China (the 863 Program,2013AA102602)the Research Fund for the Doctoral Program of Higher Education of China (20122325120015)the Academic Backbone Project of Northeast Agricultural University,China (15XG02)the Talented Young Project of Northeast Agricultural University,China (518062)
文摘Soil-borne pathogen Phytophthora sojae is an oomycete that causes devastating damage to soybean yield. To mine original resistant genes in soybean is an effective and environmentally-friend approach controlling the disease. In this study, soybean proteins were extracted from the first trifoliolates infected by predominant P. sojae race 1 and analyzed by twodimensional gel electrophoresis. Nineteen differently-expressed protein spots were detected, and 10 of them were further applied for Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry Assay. One protein containing a dirigent (DIR) domain was identified and belonged to the DIR-b/d family. Therefore, it was named as GmDRR1 (Glycine max Disease Resistance Response 1). Then, GmDRR1 gene was pathologically confirmed to be involved in the resistant to P. sojae in soybean. GmDRR1-GFP (green fluorescent protein) fusion proteins localized in the cell membrane. qRTPCR results showed GmDRR1 gene expressed differently in P. sojae resistant- and susceptible-soybean cultivars. By the promoter analysis, we found a haplotype H8 was existing in most resistant soybean varieties, while a haplotype H77 was existing in most susceptible soybean varieties. The H77 haplotype had seven SNPs (C to A, G to C, C to A, T to A, T to C, T to C, and T to A) and two single nucleotide insertions. The results supported that the expression difference of GmDRR1 genes between P. sojae resistant- and susceptible-soybean cultivars might depend on the GmDRR1 promoter SNPs. The results suggested that GmDRR1 was a dirigent protein involved in soybean resistant to P. sojae and paved a novel way for investigation of the molecular regulatory mechanism of the defense response to P. sojae in soybean.