期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Alkynyl-anchored silver nanoclusters in lanthanide metal-organic framework for luminescent thermometer and CO_(2) cycloaddition
1
作者 Jing-Wen Hu wan-zhen qiao +4 位作者 Jun-Jun Sun Jun Xu Xi-Yan Dong Chong Zhang Shuang-Quan Zang 《Nano Research》 SCIE EI CSCD 2023年第5期7452-7458,共7页
In this study,an alkynyl-modified aromatic dicarboxylic acid bifunctional ligand was selected to construct lanthanide compound{[Eu_(4)(ebdc)_(6)(4,4-bpy)_(0.5)(H_(2)O)_(4.5)]·(C_(2)H_(5)OH)_(1.25)(H_(2)O)}_(n)(Eu... In this study,an alkynyl-modified aromatic dicarboxylic acid bifunctional ligand was selected to construct lanthanide compound{[Eu_(4)(ebdc)_(6)(4,4-bpy)_(0.5)(H_(2)O)_(4.5)]·(C_(2)H_(5)OH)_(1.25)(H_(2)O)}_(n)(Eu-MOF,H_(2)ebdc=5-ethynyl-isophthalic acid,4,4-bpy=4,4-bipyridine,MOF=metal-organic framework),of which the uncoordinated alkynyl group would be used to anchor silver nanoclusters(Ag NCs).The Eu-MOF exhibits double emission peaks,located at 492 and 611 nm,respectively,in which the high-energy blue emission is associated with alkynyl-modified ligand while the low-energy red emission belongs to characteristic emission of Eu3+,indicating that ligands can effectively sensitize Eu3+luminescence.The intensity ratio of the dual emission fluorescence peaks of Eu-MOF displays a good linear relationship with temperature,which realizes the detection function in the low temperature region of 75–275 K,the thermal sensitivity reaches 1.5398%·K^(−1).After anchoring the Ag NCs,the high-energy blue emission is significantly quenched,indicating that the Ag NCs are indeed confined into the framework and interact with the alkynyl group,and thus change the overall electronic distribution.This is the first case of anchoring Ag NCs by a luminescent Eu-MOF and studying nanocluster loading by using spectroscopic properties.In addition,the Ag NCs@Eu-MOF also shows a good catalytic activity for cycloaddition reaction from CO_(2)and epoxides.This study not only provides ideas for exploring the changes in optical properties of luminescent MOFs and Ag NCs caused by confinement effect,but also expands their potential applications in various fields. 展开更多
关键词 silver nanoclusters confinement effect lanthanide metal-organic framework(MOF) ratiometric fluorescence thermometer CO_(2)cycloaddition
原文传递
Integrating Homogeneous and Heterogeneous Catalysis in a Copper Nanocluster with Lewis Acid–Base Sites for Chemical Conversion of CO_(2) and Propargylamine
2
作者 wan-zhen qiao Yu-Jue Wang +3 位作者 Si Li Rui Wang Jie Wu Shuang-Quan Zang 《CCS Chemistry》 2024年第9期2131-2141,共11页
It remains a significant challenge to develop a catalyst that merges the advantages of homogeneous and heterogeneous catalysis with high reactivity and great recyclability.Herein,an atomically precise Cu_(6)-NH_(2) na... It remains a significant challenge to develop a catalyst that merges the advantages of homogeneous and heterogeneous catalysis with high reactivity and great recyclability.Herein,an atomically precise Cu_(6)-NH_(2) nanocluster with distorted octahedral Cu_(6) core and NH_(2)-functionalized ligands has been developed as the first homo/heterogeneous catalyst to catalyze the cyclization reaction of propargylic amines with carbon dioxide(CO_(2))under mild conditions.As a homogeneous catalyst,Cu_(6)-NH_(2) shows excellent catalytic activity with high turnover frequency due to highly accessible active sites.The definite coordination geometry and homogeneity nature of active centers make it convenient to investigate the structure–activity relationship at the atomic level through experiments and theory calculations.In addition,the nanocluster exhibits excellent stability,great recrystallizability,and reusability in five catalytic cycles,in which its catalytic performance has no obvious decrease.Moreover,Cu_(6)-NH_(2) incorporates Lewis acid and base sites in metal and ligand,respectively,which can promote catalytic efficiency in a synergistic effect in the absence of any cocatalysts.Importantly,Cu_(6)-NH_(2) can realize direct conversion of CO_(2) in simulated flue gas into oxazolidinones with high efficiency.The metal-ligand cooperative effect and integrated advantages of homogeneous and heterogeneous catalysis would provide new perspectives to achieve advanced metal nanocluster catalysts for CO_(2) conversion. 展开更多
关键词 copper nanocluster atomically precise structure Lewis acid-base sites CO_(2)cyclization reaction cocatalyst-free
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部