Invasive fungal infections(IFIs)have been associated with high mortality,highlighting the urgent need for developing novel antifungal strategies.Herein the first light-responsive antifungal agents were designed by opt...Invasive fungal infections(IFIs)have been associated with high mortality,highlighting the urgent need for developing novel antifungal strategies.Herein the first light-responsive antifungal agents were designed by optical control of fungal ergosterol biosynthesis pathway with photocaged triazole lanosterol 14a-demethylase(CYP51)inhibitors.The photocaged triazoles completely shielded the CYP51inhibition.The content of ergosterol in fungi before photoactivation and after photoactivation was 4.4%and 83.7%,respectively.Importantly,the shielded antifungal activity(MIC80≥64μg/m L)could be efficiently recovered(MIC80=0.5—8μg/m L)by light irradiation.The new chemical tools enable optical control of fungal growth arrest,morphological conversion and biofilm formation.The ability for highprecision antifungal treatment was validated by in vivo models.The light-activated compound A1 was comparable to fluconazole in prolonging survival in Galleria mellonella larvae with a median survival of 14 days and reducing fungal burden in the mouse skin infection model.Overall,this study paves the way for precise regulation of antifungal therapy with improved efficacy and safety.展开更多
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C....Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.展开更多
基金supported by the National Natural Science Foundation(81725020,82003591 and 81973175,China)the Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-07-E00073,China)Science and Technology Commission of Shanghai Municipality(20S11900400,China)。
文摘Invasive fungal infections(IFIs)have been associated with high mortality,highlighting the urgent need for developing novel antifungal strategies.Herein the first light-responsive antifungal agents were designed by optical control of fungal ergosterol biosynthesis pathway with photocaged triazole lanosterol 14a-demethylase(CYP51)inhibitors.The photocaged triazoles completely shielded the CYP51inhibition.The content of ergosterol in fungi before photoactivation and after photoactivation was 4.4%and 83.7%,respectively.Importantly,the shielded antifungal activity(MIC80≥64μg/m L)could be efficiently recovered(MIC80=0.5—8μg/m L)by light irradiation.The new chemical tools enable optical control of fungal growth arrest,morphological conversion and biofilm formation.The ability for highprecision antifungal treatment was validated by in vivo models.The light-activated compound A1 was comparable to fluconazole in prolonging survival in Galleria mellonella larvae with a median survival of 14 days and reducing fungal burden in the mouse skin infection model.Overall,this study paves the way for precise regulation of antifungal therapy with improved efficacy and safety.
基金supported by the National Natural Science Foundation (81725020, 82003591 and 81973175, China)the Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-07-E00073, China)Science and Technology Commission of Shanghai Municipality (20S11900400, China)
文摘Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.