A type of novel electrospun supramolecular hybrid microfibers comprising poly(9-(4-(octyloxy)-phenyl)-2,7-fluoren-9-ol)(PPFOH)and poly(A/-vinylcarbazole)(PVK)are successfully prepared for intriguing multi-color emissi...A type of novel electrospun supramolecular hybrid microfibers comprising poly(9-(4-(octyloxy)-phenyl)-2,7-fluoren-9-ol)(PPFOH)and poly(A/-vinylcarbazole)(PVK)are successfully prepared for intriguing multi-color emission properties.The supramolecular tunable PPFOH aggregation in PVK matrix endows the complex with a smart energy transfer behavior to obtain the multi-color emissions.In stark contrast to PVK fibers,the emission color of PPFOH/PVK fibers with an efficient dispersion of PPFOH fluorophores at a proper dope ratio can be tuned in a wide spectrum of blue(0.1%),sky blue(0.5%),nearly white(1%),cyan(2%),green(5%)and yellow(10%).Besides,conductive behaviors of the microfiber were demonstrated in accompany with the increment of the doping ratio of PPFOH to PVK.Successful fabrication of polymer light-emitting diode(PLED)based on the blended electrospun fiber provided a further evidence of its excellent electrical property for potential applications in optoelectronic devices.展开更多
基金the Six Peak Talents Foundation of Jiangsu Province(Nos.XCL-CXTD-009 and XYDXX-019)the National Natural Science Foundation of China(Nos.22075136,21471082,21472186,61874053 and 21272231)+3 种基金Natural Science Funds of the Education Committee of Jiangsu Province(Nos.18KJA510003 and 18KJA430009)Natural Science Foundation of Jiangsu Province(No.BK20200700)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,No.YX030003)the open research fund from Key Laboratory for Organic Electronics and Information Displays and Qing Lan Project of Jiangsu Province.
文摘A type of novel electrospun supramolecular hybrid microfibers comprising poly(9-(4-(octyloxy)-phenyl)-2,7-fluoren-9-ol)(PPFOH)and poly(A/-vinylcarbazole)(PVK)are successfully prepared for intriguing multi-color emission properties.The supramolecular tunable PPFOH aggregation in PVK matrix endows the complex with a smart energy transfer behavior to obtain the multi-color emissions.In stark contrast to PVK fibers,the emission color of PPFOH/PVK fibers with an efficient dispersion of PPFOH fluorophores at a proper dope ratio can be tuned in a wide spectrum of blue(0.1%),sky blue(0.5%),nearly white(1%),cyan(2%),green(5%)and yellow(10%).Besides,conductive behaviors of the microfiber were demonstrated in accompany with the increment of the doping ratio of PPFOH to PVK.Successful fabrication of polymer light-emitting diode(PLED)based on the blended electrospun fiber provided a further evidence of its excellent electrical property for potential applications in optoelectronic devices.