A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberran...A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberrant values or outliers due to the significant fluctuation of this sort of data, which is influenced by Climate change and the environment. With accelerating industrial expansion and rising population density in Kolkata City, air pollution is continuously rising. This study involves two phases, in the first phase imputation of missing values and second detection of outliers using Statistical Process Control (SPC), and Functional Data Analysis (FDA), studies to achieve the efficacy of the outlier identification methodology proposed with working days and Nonworking days of the variables NO<sub>2</sub>, SO<sub>2</sub>, and O<sub>3</sub>, which were used for a year in a row in Kolkata, India. The results show how the functional data approach outshines traditional outlier detection methods. The outcomes show that functional data analysis vibrates more than the other two approaches after imputation, and the suggested outlier detector is absolutely appropriate for the precise detection of outliers in highly variable data.展开更多
In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for pr...In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for predictor variables. Under the model, the asymptotic consistency of the suggested estimator is demonstrated and properties of finite-sample are also investigated via simulation. In simulation studies and real data sets, it is observed that the newly proposed technique demonstrated the greatest performance among all estimators compared.展开更多
Non-responses leading to missing data are common in most studies and causes inefficient and biased statistical inferences if ignored. When faced with missing data, many studies choose to employ complete case analysis ...Non-responses leading to missing data are common in most studies and causes inefficient and biased statistical inferences if ignored. When faced with missing data, many studies choose to employ complete case analysis approach to estimate the parameters of the model. This however compromises on the susceptibility of the estimates to reduced bias and minimum variance as expected. Several classical and model based techniques of imputing the missing values have been mentioned in literature. Bayesian approach to missingness is deemed superior amongst the other techniques through its natural self-lending to missing data settings where the missing values are treated as unobserved random variables that have a distribution which depends on the observed data. This paper digs up the superiority of Bayesian imputation to Multiple Imputation with Chained Equations (MICE) when estimating logistic panel data models with single fixed effects. The study validates the superiority of conditional maximum likelihood estimates for nonlinear binary choice logit panel model in the presence of missing observations. A Monte Carlo simulation was designed to determine the magnitude of bias and root mean square errors (RMSE) arising from MICE and Full Bayesian imputation. The simulation results show that the conditional maximum likelihood (ML) logit estimator presented in this paper is less biased and more efficient when Bayesian imputation is performed to curb non-responses.展开更多
Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities tu...Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities turn up dangerous contaminants in our surroundings. This study investigated two years’ worth of air quality and outlier detection data from two Indian cities. Studies on air pollution have used numerous types of methodologies, with various gases being seen as a vector whose components include gas concentration values for each observation per-formed. We use curves to represent the monthly average of daily gas emissions in our technique. The approach, which is based on functional depth, was used to find outliers in the city of Delhi and Kolkata’s gas emissions, and the outcomes were compared to those from the traditional method. In the evaluation and comparison of these models’ performances, the functional approach model studied well.展开更多
The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation st...The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation study to assess the performance of a suggested estimator compared to the maximum likelihood estimator and some robust methods. The result shows that, in general, all robust methods in this paper perform better than the classical maximum likelihood estimators when the model contains outliers. The proposed estimators showed the best performance compared to other robust estimators.展开更多
Logistic regression is the most important tool for data analysis in various fields. The classical approach for estimating parameters is the maximum likelihood estimation, a disadvantage of this method is high sensitiv...Logistic regression is the most important tool for data analysis in various fields. The classical approach for estimating parameters is the maximum likelihood estimation, a disadvantage of this method is high sensitivity to outlying observations. Robust estimators for logistic regression are alternative techniques due to their robustness. This paper presents a new class of robust techniques for logistic regression. They are weighted maximum likelihood estimators which are considered as Mallows-type estimator. Moreover, we compare the performance of these techniques with classical maximum likelihood and some existing robust estimators. The results are illustrated depending on a simulation study and real datasets.?The new estimators showed the best performance relative to other estimators.展开更多
文摘A variety of factors affect air quality, making it a difficult issue. The level of clean air in a certain area is referred to as air quality. It is challenging for conventional approaches to correctly discover aberrant values or outliers due to the significant fluctuation of this sort of data, which is influenced by Climate change and the environment. With accelerating industrial expansion and rising population density in Kolkata City, air pollution is continuously rising. This study involves two phases, in the first phase imputation of missing values and second detection of outliers using Statistical Process Control (SPC), and Functional Data Analysis (FDA), studies to achieve the efficacy of the outlier identification methodology proposed with working days and Nonworking days of the variables NO<sub>2</sub>, SO<sub>2</sub>, and O<sub>3</sub>, which were used for a year in a row in Kolkata, India. The results show how the functional data approach outshines traditional outlier detection methods. The outcomes show that functional data analysis vibrates more than the other two approaches after imputation, and the suggested outlier detector is absolutely appropriate for the precise detection of outliers in highly variable data.
文摘In this paper, a weighted maximum likelihood technique (WMLT) for the logistic regression model is presented. This method depended on a weight function that is continuously adaptable using Mahalanobis distances for predictor variables. Under the model, the asymptotic consistency of the suggested estimator is demonstrated and properties of finite-sample are also investigated via simulation. In simulation studies and real data sets, it is observed that the newly proposed technique demonstrated the greatest performance among all estimators compared.
文摘Non-responses leading to missing data are common in most studies and causes inefficient and biased statistical inferences if ignored. When faced with missing data, many studies choose to employ complete case analysis approach to estimate the parameters of the model. This however compromises on the susceptibility of the estimates to reduced bias and minimum variance as expected. Several classical and model based techniques of imputing the missing values have been mentioned in literature. Bayesian approach to missingness is deemed superior amongst the other techniques through its natural self-lending to missing data settings where the missing values are treated as unobserved random variables that have a distribution which depends on the observed data. This paper digs up the superiority of Bayesian imputation to Multiple Imputation with Chained Equations (MICE) when estimating logistic panel data models with single fixed effects. The study validates the superiority of conditional maximum likelihood estimates for nonlinear binary choice logit panel model in the presence of missing observations. A Monte Carlo simulation was designed to determine the magnitude of bias and root mean square errors (RMSE) arising from MICE and Full Bayesian imputation. The simulation results show that the conditional maximum likelihood (ML) logit estimator presented in this paper is less biased and more efficient when Bayesian imputation is performed to curb non-responses.
文摘Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities turn up dangerous contaminants in our surroundings. This study investigated two years’ worth of air quality and outlier detection data from two Indian cities. Studies on air pollution have used numerous types of methodologies, with various gases being seen as a vector whose components include gas concentration values for each observation per-formed. We use curves to represent the monthly average of daily gas emissions in our technique. The approach, which is based on functional depth, was used to find outliers in the city of Delhi and Kolkata’s gas emissions, and the outcomes were compared to those from the traditional method. In the evaluation and comparison of these models’ performances, the functional approach model studied well.
文摘The present paper proposes a new robust estimator for Poisson regression models. We used the weighted maximum likelihood estimators which are regarded as Mallows-type estimators. We perform a Monte Carlo simulation study to assess the performance of a suggested estimator compared to the maximum likelihood estimator and some robust methods. The result shows that, in general, all robust methods in this paper perform better than the classical maximum likelihood estimators when the model contains outliers. The proposed estimators showed the best performance compared to other robust estimators.
文摘Logistic regression is the most important tool for data analysis in various fields. The classical approach for estimating parameters is the maximum likelihood estimation, a disadvantage of this method is high sensitivity to outlying observations. Robust estimators for logistic regression are alternative techniques due to their robustness. This paper presents a new class of robust techniques for logistic regression. They are weighted maximum likelihood estimators which are considered as Mallows-type estimator. Moreover, we compare the performance of these techniques with classical maximum likelihood and some existing robust estimators. The results are illustrated depending on a simulation study and real datasets.?The new estimators showed the best performance relative to other estimators.