Melt treatment is well known to have an important influence on the properties of metallic glasses(MGs).However,for the MGs quenched from different melt temperatures with a quartz tube,the underlying physical origin re...Melt treatment is well known to have an important influence on the properties of metallic glasses(MGs).However,for the MGs quenched from different melt temperatures with a quartz tube,the underlying physical origin responsible for the variation of properties remains poorly understood.In the present work,we systematically studied the influence of melt treatment on the thermal properties of a Zr50Cu36Al14 glass-forming alloy and unveiled the microscopic origins.Specifically,we quenched the melt at different temperatures ranging from 1.1Tl to 1.5Tl(Tl is the liquidus temperature)to obtain melt-spun MG ribbons and investigated the variation of thermal properties of the MGs upon heating.We found that glass transition temperature,Tg,increases by as much as 36 K,and the supercooled liquid region disappears in the curve of differential scanning calorimetry when the melt is quenched at a high temperature up to 1.5Tl.The careful chemical analyses indicate that the change in glass transition behavior originates from the incorporation of oxygen and silicon in the molten alloys.The incorporated oxygen and silicon can both enhance the interactions between atoms,which renders the cooperative rearrangements of atoms difficult,and thus enhances the kinetic stability of the MGs.展开更多
The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH g...The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH groups in PAA leads to the formation of intramolecular and intermolecular hydrogen bonds,greatly weakening the bonding force of the binder to SiO surface.However,strengthening the binder-material interaction from the perspective of binder molecular regulation poses a significant challenge.Herein,a modified PAA-Li_(x)(0.25≤x≤1)binder with prominent mechanical properties and adhesion strength is specifically synthesized for SiO anodes by quantitatively substituting the carboxylic hydrogen with lithium.The appropriate lithium substitution(x=0.25)not only effectively increases the number of hydrogen bonds between the PAA binder and SiO surface owing to charge repulsion effect between ions,but also guarantees moderate entanglement between PAA-Li_x molecular chains through the ion-dipole interaction.As such,the PAA-Li_(0.25)/SiO electrode exhibits exceptional mechanical properties and the lowest volume change,as well as the optimum cycling(1237.3 mA h g^(-1)after 100cycles at 0.1 C)and rate performance(1000.6 mA h g^(-1)at 1 C),significantly outperforming the electrode using pristine PAA binder.This work paves the way for quantitative regulation of binders at the molecular level.展开更多
The rapid cooling of a metallic liquid(ML)results in short-range order(SRO)among the atomic arrangements and a disordered structure in the resulting metallic glass(MG).These phenomena cause various possible features i...The rapid cooling of a metallic liquid(ML)results in short-range order(SRO)among the atomic arrangements and a disordered structure in the resulting metallic glass(MG).These phenomena cause various possible features in the microscopic structure of the MG,presenting a puzzle about the nature of the MGs’microscopic structure beyond SRO.In this study,the nanoscale density gradient(NDG)originating from a sequential arrangement of clusters with different atomic packing densities(APDs),representing the medium-range structural heterogeneity in Zr_(60)Cu_(30)Al_(10)MG,was characterized using electron tomography(ET)combined with image simulations based on structure modeling.The coarse polyhedrons with distinct facets identified in the three-dimensional images coincide with icosahedron-like clusters and represent the spatial positions of clusters with high APDs.Rearrangements of the different clusters according to descending APD order in the glass-forming process are responsible for the NDG that stabilizes both the supercooled ML and the amorphous states and acts as a hidden rule in the transition from ML to MG.展开更多
High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of ...High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of these EPMs driven by passing energetic particles(EPs)are studied via the global hybrid kinetic-magnetohydrodynamic code M3D-K.Simulation results demonstrate that passing EPs'effects on high mode-number harmonics(q(ψ_(s))=m/n=2/2,3/3,4/4)instability are more obvious than the q(ψ_(s))=1/1 mode,especially when q-profile is sufficiently flat in the core region.Furthermore,the effects of the pitch angleΛ_0 and beam ion pressure P_(hot)/P_(total)on the features of high n components are also analyzed specifically.It is found that there exists only one resonant condition for these EPMs.In the nonlinear phase,these high mode-number harmonics can induce significant energetic ions redistribution and chirping up phenomena,which differs from the classical fishbone excited by passing EPs.These discoveries are conducive to better apprehend the underlying physical mechanisms of the highorder harmonics driven by passing EPs.展开更多
A complete spinal cord injury model was established in experimental rabbits using the spinal cord clip compression method. Urodynamic examination was performed 2 weeks later to determine neurogenic bladder status. The...A complete spinal cord injury model was established in experimental rabbits using the spinal cord clip compression method. Urodynamic examination was performed 2 weeks later to determine neurogenic bladder status. The rabbits were treated with anodal block stimulation at sacral anterior roots for 4 weeks. Electrical stimulation of sacral anterior roots improved urodynamic parameters of neurogenic bladder in rabbit models of complete spinal cord injury, effectively promoted urinary function, and relieved urinary retention. Immunohistochemistry results showed that a balance was achieved among expression of muscarinic receptor subunits M2, M3, ATP-gated ion channel P2X3 receptors, and 132-adrenergic receptor, and nerve growth factor expression decreased. These results suggested that long-term sacral anterior root stimulation of anodal block could'be used to treat neurogenic bladder in a rabbit model of complete spinal cord injury.展开更多
We investigated the effects of cytokines and chemokines and their associated signaling pathways on mesenchymal stem cell migration after spinal cord injury, to determine their roles in the curative effects of mesenchy...We investigated the effects of cytokines and chemokines and their associated signaling pathways on mesenchymal stem cell migration after spinal cord injury, to determine their roles in the curative effects of mesenchymal stem cells. This study reviewed the effects of tumor necrosis factor-α, vascular endothelial growth factor, hepatocyte growth factor, platelet-derived growth factor, basic fibroblast growth factor, insulin like growth factor-I, stromal cell-derived factor and monocyte chemoattractant protein-1, 3 during mesenchymal stem cell migration to damaged sites, and analyzed the signal transduction pathways involved in their effects on mesenchymal stem cell migration. The results confirmed that phosphatidylinositol 3-kinase/serine/threonine protein kinases and nuclear factor-KB play crucial roles in the migration of mesenchymal stem cells induced by cytokines and chemokines.展开更多
In paired Fermi systems,strong many-body effects exhibit in the crossover regime between the Bardeen–Cooper–Schrieffer(BCS)and the Bose–Einstein condensation(BEC)limits.The concept of the BCS–BEC crossover,which i...In paired Fermi systems,strong many-body effects exhibit in the crossover regime between the Bardeen–Cooper–Schrieffer(BCS)and the Bose–Einstein condensation(BEC)limits.The concept of the BCS–BEC crossover,which is studied intensively in the research field of cold atoms,has been extended to condensed matters.Here by analyzing the typical superconductors within the BCS–BEC phase diagram,we find that FeSe-based superconductors are prone to shift their positions in the BCS–BEC crossover regime by charge doping or substrate substitution,since their Fermi energies and the superconducting gap sizes are comparable.Especially at the interface of single-layer FeSe on SrTiO3 substrate,the superconductivity is relocated closer to the crossover unitary than other doped FeSe-based materials,indicating that the pairing interaction is effectively modulated.We further show that hole-doping can drive the interfacial system into the phase with possible pre-paired electrons,demonstrating its flexible tunability within the BCS–BEC crossover regime.展开更多
An ultra-wideband metamaterial absorber is developed,which is polarized-insensitive and angular-stable.Three layers of square resistive films comprise the proposed metamaterial.The optimal values of geometric paramete...An ultra-wideband metamaterial absorber is developed,which is polarized-insensitive and angular-stable.Three layers of square resistive films comprise the proposed metamaterial.The optimal values of geometric parameters are obtained,such that the designed absorber can achieve an ultra-broadband absorption response from 4.73 to 39.04 GHz(relative bandwidth of 156.7%)for both transverse electricity and transverse magnetic waves.Moreover,impedance matching theory and an equivalent circuit model are utilized for the absorption mechanism analysis.The compatibility of equivalent circuit calculation results,together with both full-wave simulation and experimental results,demonstrates the excellent performance and applicability of the proposed metamaterial absorber.展开更多
With the vacuum freeze-drying technology, frozen dumpling wrappers were prepared, to investigate the effects of six kinds of food additives, including modified starch, compound phosphate, maltodextrin, guar gum, disti...With the vacuum freeze-drying technology, frozen dumpling wrappers were prepared, to investigate the effects of six kinds of food additives, including modified starch, compound phosphate, maltodextrin, guar gum, distilled monoglycerides and transglutaminase (TG enzyme), on the drying rate, rehydration ratio and sense value of the frozen dumpling wrappers. The results showed that, with respective addition of 6% modified starch, O. 1% compound phosphate, 10% maltodextrin, 0.4% guar gum, 0.4% distilled monoglyceride and 0.3% transglutaminase, the drying rate, rehydration ratio and sense value of the frozen dumpling wrappers were the highest.展开更多
Gene nanos is a maternal posterior group gene required for normal development of abdominal segments and the germ line in Drosophila. Expression of nanos-related genes is associated with the germ line in a broad variet...Gene nanos is a maternal posterior group gene required for normal development of abdominal segments and the germ line in Drosophila. Expression of nanos-related genes is associated with the germ line in a broad variety of other taxa. In this study, the 5'-RACE method and the in silico cloning method are used to isolate the new nanos-like gene of Bombyx mor/and the gene obtained is analyzed with bioinformatics tools. The putative protein is expressed in Escherichia coli and the antiserum has been produced in New Zealand white rabbits. The result shows that the nanos cDNA is 1,913 bp in full length and contains a 954 bp open reading frame. The deduced protein has 317 amino acid residues, with a predicted molecular weight of 35 kDa, isoelectric point of 5.38, and contains a conserved nanos RNA binding domain. The conserved region of the deduced protein shares 73% homology with the nanos protein conserved region of Honeybee (Apis mellifera). This gene has been registered in the GenBank under the accession number EF647589. One encoding sequence of the nanos fragment has been successfully expressed in E. coli. Western blotting analysis indicates that homemade antiserum can specifically detect nanos protein expressed in prokaryotic cells.展开更多
Circulators play a significant role in radar and microwave communication systems.This paper proposes a broadband and highly efficient plasmonic circulator,which consists of spoof surface plasmon polaritons(SSPPs)waveg...Circulators play a significant role in radar and microwave communication systems.This paper proposes a broadband and highly efficient plasmonic circulator,which consists of spoof surface plasmon polaritons(SSPPs)waveguides and ferrite disks to support non-reciprocal mode coupling.The simulated performance of symmetrically designed circulator shows that it has an insertion loss of roughly 0.5 dB while the isolation and return loss is more than 12 dB in the frequency range of 6.0 GHz–10.0 GHz(relative bandwidth of 50%).Equivalent circuit model has been proposed to explain the operating mechanism of the plasmonic circulator.The equivalent circuit model,numerical simulations,and experimental results are consistent with each other,which demonstrates the good performance of the proposed plasmonic circulator.展开更多
Most of the current graphene plasmonic researches are based on the substrates with isotropic dielectric constant such as silicon.In this work,we investigate optical properties of graphene nanoribbon arrays placed on a...Most of the current graphene plasmonic researches are based on the substrates with isotropic dielectric constant such as silicon.In this work,we investigate optical properties of graphene nanoribbon arrays placed on a uniaxially anisotropic substrate,where the anisotropy provides an additional freedom to tune the behaviors of graphene plasmons,and its effect can be described by a simple effective formula.In practice,the substrates of semi-infinite and finite thickness are discussed by using both the formula and full wave simulations.Particularly,the dielectric constants ε|| and ε⊥ approaching zero are intensively studied,which show different impacts on the transverse magnetic(TM) surface modes.In reality,the hexagonal boron nitride(hBN) can be chosen as the anisotropic substrate,which is also a hyperbolic material in nature.展开更多
The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport c...The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916. The real-time feed-back control system for the plasma displacement was employed. Modeling results of the evolution of the poloidal field coil currents, the plasma current, the major radius, the plasma configuration all show agreement with experimental measurements. Results from the simulation show that during disruption, heat flux about 8 MW m-2 flows to the upper divertor target plate and about 6 MW m-2 flows to the lower divertor target plate. Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient. This shows that TSC has high flexibility and predictability.展开更多
Esophageal cancer(EC)was an aggressive malignant neoplasm characterized by high morbidity and poor prognosis.Identifying the changes in DNA damage repair genes helps to better understand the mechanisms of carcinoma pr...Esophageal cancer(EC)was an aggressive malignant neoplasm characterized by high morbidity and poor prognosis.Identifying the changes in DNA damage repair genes helps to better understand the mechanisms of carcinoma progression.In this study,by comparing EC samples and normal samples,we found a total of 132 DDR expression with a significant difference.Moreover,we revealed higher expression of POLN,PALB2,ATM,PER1,TOP3B and lower expression of HMGB1,UBE2B were correlated to longer OS in EC.In addition,a prognostic risk score based on 7 DDR gene expression(POLN,HMGB1,TOP3B,PER1,UBE2B,ATM,PALB2)was constructed for the prognosis of EC.Meanwhile,EC cancer samples were divided into 3 subtypes based on 132 DDR genes expressions.Clinical profile analysis showed cluster C1 and C2 showed a similar frequency of T2,which was remarked higher than that in cluster 3.Moreover,we found the immune cell inflation levels were significantly changed in different subtypes of EC.The infiltration levels of T cell CD8+,B cell and NK cells were greatly higher in cluster 2 than that in cluster 1 and cluster 3.The results showed T cell CD4+infiltration levels were dramatically higher in cluster 1 than that in cluster 2 and cluster 3.Finally,we perform bioinformatics analysis of DEGs among 3 subtypes of EC and found DDR genes may be related to multiple signaling,such as Base excision repair,Cell cycle,Hedgehog signaling pathway,and Glycolysis/Gluconeogenesis.These results showed DDR genes may serve as new target for the prognosis of EC and prediction of the potential response of immune therapy in EC.展开更多
The absorption coefficient is usually considered as a constant for certain materials at the given wavelength.However,recent experiments demonstrated that the absorption coefficient could be enhanced a lot by the PN ju...The absorption coefficient is usually considered as a constant for certain materials at the given wavelength.However,recent experiments demonstrated that the absorption coefficient could be enhanced a lot by the PN junction.The absorption coefficient varies with the thickness of the intrinsic layer in a PIN structure.Here,we interpret the anomalous absorption coefficient from the competition between recombination and drift for non-equilibrium carriers.Based on the Fokker-Planck theory,a non-equilibrium statistical model that describes the relationship between absorption coefficient and material thickness has been proposed.It could predict the experimental data well.Our results can give new ideas to design photoelectric devices.展开更多
A large amount of ultra-low-power consumption electronic devices are urgently needed in the new era of the internet of things,which demand relatively low frequency response.Here,atomic layer deposition has been utiliz...A large amount of ultra-low-power consumption electronic devices are urgently needed in the new era of the internet of things,which demand relatively low frequency response.Here,atomic layer deposition has been utilized to fabricate the ion polarization dielectric of the Li PON-Al_(2)O_(3) hybrid structure.The Li PON thin film is periodically stacked in the Al_(2)O_(3) matrix.This hybrid structure presents a frequency-dependent dielectric constant,of which k is significantly higher than the aluminum oxide matrix from 1 k Hz to 200 k Hz in frequency.The increased dielectric constant is attributed to the lithium ions shifting locally upon the applied electrical field,which shows an additional polarization to the Al_(2)O_(3) matrix.This work provides a new strategy with promising potential to engineers for the dielectric constant of the gate oxide and sheds light on the application of electrolyte/dielectric hybrid structure in a variety of devices from capacitors to transistors.展开更多
基金The work was financially supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0703600,2021YFA0716302,and 2021YFA0718703)the National Natural Science Foundation of China(Grant Nos.51825104 and 52192602)China Postdoctoral Science Foundation(Grant No.2022T150691).
文摘Melt treatment is well known to have an important influence on the properties of metallic glasses(MGs).However,for the MGs quenched from different melt temperatures with a quartz tube,the underlying physical origin responsible for the variation of properties remains poorly understood.In the present work,we systematically studied the influence of melt treatment on the thermal properties of a Zr50Cu36Al14 glass-forming alloy and unveiled the microscopic origins.Specifically,we quenched the melt at different temperatures ranging from 1.1Tl to 1.5Tl(Tl is the liquidus temperature)to obtain melt-spun MG ribbons and investigated the variation of thermal properties of the MGs upon heating.We found that glass transition temperature,Tg,increases by as much as 36 K,and the supercooled liquid region disappears in the curve of differential scanning calorimetry when the melt is quenched at a high temperature up to 1.5Tl.The careful chemical analyses indicate that the change in glass transition behavior originates from the incorporation of oxygen and silicon in the molten alloys.The incorporated oxygen and silicon can both enhance the interactions between atoms,which renders the cooperative rearrangements of atoms difficult,and thus enhances the kinetic stability of the MGs.
基金supported by the National Natural Science Foundation of China (Grant Nos.92372101,52162036 and 21875155)the Fundamental Research Funds for the Central Universities (Grant Nos.20720220010)the National Key Research and Development Program of China (Grant Nos.2021YFA1201502)。
文摘The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH groups in PAA leads to the formation of intramolecular and intermolecular hydrogen bonds,greatly weakening the bonding force of the binder to SiO surface.However,strengthening the binder-material interaction from the perspective of binder molecular regulation poses a significant challenge.Herein,a modified PAA-Li_(x)(0.25≤x≤1)binder with prominent mechanical properties and adhesion strength is specifically synthesized for SiO anodes by quantitatively substituting the carboxylic hydrogen with lithium.The appropriate lithium substitution(x=0.25)not only effectively increases the number of hydrogen bonds between the PAA binder and SiO surface owing to charge repulsion effect between ions,but also guarantees moderate entanglement between PAA-Li_x molecular chains through the ion-dipole interaction.As such,the PAA-Li_(0.25)/SiO electrode exhibits exceptional mechanical properties and the lowest volume change,as well as the optimum cycling(1237.3 mA h g^(-1)after 100cycles at 0.1 C)and rate performance(1000.6 mA h g^(-1)at 1 C),significantly outperforming the electrode using pristine PAA binder.This work paves the way for quantitative regulation of binders at the molecular level.
基金supported by the National Natural Science Foundation of China(51971093,52192603,and 51501043)。
文摘The rapid cooling of a metallic liquid(ML)results in short-range order(SRO)among the atomic arrangements and a disordered structure in the resulting metallic glass(MG).These phenomena cause various possible features in the microscopic structure of the MG,presenting a puzzle about the nature of the MGs’microscopic structure beyond SRO.In this study,the nanoscale density gradient(NDG)originating from a sequential arrangement of clusters with different atomic packing densities(APDs),representing the medium-range structural heterogeneity in Zr_(60)Cu_(30)Al_(10)MG,was characterized using electron tomography(ET)combined with image simulations based on structure modeling.The coarse polyhedrons with distinct facets identified in the three-dimensional images coincide with icosahedron-like clusters and represent the spatial positions of clusters with high APDs.Rearrangements of the different clusters according to descending APD order in the glass-forming process are responsible for the NDG that stabilizes both the supercooled ML and the amorphous states and acts as a hidden rule in the transition from ML to MG.
基金supported by National Key R&D Program of China(Nos.2019YFE03050002,2018YFE0310400,and 2022YFE03040002)National Natural Science Foundation of China(Nos.12005003 and 11975270)Science Foundation of Institute of Plasma Physics,Chinese Academy of Sciences(No.DSJJ-2022-04)。
文摘High-order harmonics q(ψ_(s))=1 energetic particle modes(EPMs)have been observed in toroidal plasmas experiments with neutral beam injection.To investigate these phenomena,linear properties and nonlinear dynamics of these EPMs driven by passing energetic particles(EPs)are studied via the global hybrid kinetic-magnetohydrodynamic code M3D-K.Simulation results demonstrate that passing EPs'effects on high mode-number harmonics(q(ψ_(s))=m/n=2/2,3/3,4/4)instability are more obvious than the q(ψ_(s))=1/1 mode,especially when q-profile is sufficiently flat in the core region.Furthermore,the effects of the pitch angleΛ_0 and beam ion pressure P_(hot)/P_(total)on the features of high n components are also analyzed specifically.It is found that there exists only one resonant condition for these EPMs.In the nonlinear phase,these high mode-number harmonics can induce significant energetic ions redistribution and chirping up phenomena,which differs from the classical fishbone excited by passing EPs.These discoveries are conducive to better apprehend the underlying physical mechanisms of the highorder harmonics driven by passing EPs.
文摘A complete spinal cord injury model was established in experimental rabbits using the spinal cord clip compression method. Urodynamic examination was performed 2 weeks later to determine neurogenic bladder status. The rabbits were treated with anodal block stimulation at sacral anterior roots for 4 weeks. Electrical stimulation of sacral anterior roots improved urodynamic parameters of neurogenic bladder in rabbit models of complete spinal cord injury, effectively promoted urinary function, and relieved urinary retention. Immunohistochemistry results showed that a balance was achieved among expression of muscarinic receptor subunits M2, M3, ATP-gated ion channel P2X3 receptors, and 132-adrenergic receptor, and nerve growth factor expression decreased. These results suggested that long-term sacral anterior root stimulation of anodal block could'be used to treat neurogenic bladder in a rabbit model of complete spinal cord injury.
基金funded by the National Natural Science Foundation of China (Establishment of goat models of ischemic injury via corticospinal tract projection tract and action mechanism of MPA1B axon guidance during BMSC migration in the spinal cord), No. 30972153
文摘We investigated the effects of cytokines and chemokines and their associated signaling pathways on mesenchymal stem cell migration after spinal cord injury, to determine their roles in the curative effects of mesenchymal stem cells. This study reviewed the effects of tumor necrosis factor-α, vascular endothelial growth factor, hepatocyte growth factor, platelet-derived growth factor, basic fibroblast growth factor, insulin like growth factor-I, stromal cell-derived factor and monocyte chemoattractant protein-1, 3 during mesenchymal stem cell migration to damaged sites, and analyzed the signal transduction pathways involved in their effects on mesenchymal stem cell migration. The results confirmed that phosphatidylinositol 3-kinase/serine/threonine protein kinases and nuclear factor-KB play crucial roles in the migration of mesenchymal stem cells induced by cytokines and chemokines.
基金Supported by the National Key R&D Program of China under Grant Nos 2017YFA0303600,2016YFA0300600 and2016YFA0202300the National Natural Science Foundation of China under Grant No 11634016+3 种基金the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07030100the Research Program of Beijing Academy of Quantum Information Sciences under Grant No Y18G09the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2016008the Hundred Talents Program of Chinese Academy of Sciences
文摘In paired Fermi systems,strong many-body effects exhibit in the crossover regime between the Bardeen–Cooper–Schrieffer(BCS)and the Bose–Einstein condensation(BEC)limits.The concept of the BCS–BEC crossover,which is studied intensively in the research field of cold atoms,has been extended to condensed matters.Here by analyzing the typical superconductors within the BCS–BEC phase diagram,we find that FeSe-based superconductors are prone to shift their positions in the BCS–BEC crossover regime by charge doping or substrate substitution,since their Fermi energies and the superconducting gap sizes are comparable.Especially at the interface of single-layer FeSe on SrTiO3 substrate,the superconductivity is relocated closer to the crossover unitary than other doped FeSe-based materials,indicating that the pairing interaction is effectively modulated.We further show that hole-doping can drive the interfacial system into the phase with possible pre-paired electrons,demonstrating its flexible tunability within the BCS–BEC crossover regime.
基金Supported by the Six Talent Peaks Project in Jiangsu Province(Grant No.XYDXX-072)the National Natural Science Foundation of China(Grant Nos.61372048 and 61771226)the Natural Science Foundation of Jiangsu Province(Grant No.BK20161186).
文摘An ultra-wideband metamaterial absorber is developed,which is polarized-insensitive and angular-stable.Three layers of square resistive films comprise the proposed metamaterial.The optimal values of geometric parameters are obtained,such that the designed absorber can achieve an ultra-broadband absorption response from 4.73 to 39.04 GHz(relative bandwidth of 156.7%)for both transverse electricity and transverse magnetic waves.Moreover,impedance matching theory and an equivalent circuit model are utilized for the absorption mechanism analysis.The compatibility of equivalent circuit calculation results,together with both full-wave simulation and experimental results,demonstrates the excellent performance and applicability of the proposed metamaterial absorber.
基金Supported by National Undergraduate Training Program for Innovation and Entrepreneurship(201410459011)
文摘With the vacuum freeze-drying technology, frozen dumpling wrappers were prepared, to investigate the effects of six kinds of food additives, including modified starch, compound phosphate, maltodextrin, guar gum, distilled monoglycerides and transglutaminase (TG enzyme), on the drying rate, rehydration ratio and sense value of the frozen dumpling wrappers. The results showed that, with respective addition of 6% modified starch, O. 1% compound phosphate, 10% maltodextrin, 0.4% guar gum, 0.4% distilled monoglyceride and 0.3% transglutaminase, the drying rate, rehydration ratio and sense value of the frozen dumpling wrappers were the highest.
基金This project was supported by the National Natural Science Foundation of China(No.30370773)National Basic Research Program of China(No.2005CB 121000).
文摘Gene nanos is a maternal posterior group gene required for normal development of abdominal segments and the germ line in Drosophila. Expression of nanos-related genes is associated with the germ line in a broad variety of other taxa. In this study, the 5'-RACE method and the in silico cloning method are used to isolate the new nanos-like gene of Bombyx mor/and the gene obtained is analyzed with bioinformatics tools. The putative protein is expressed in Escherichia coli and the antiserum has been produced in New Zealand white rabbits. The result shows that the nanos cDNA is 1,913 bp in full length and contains a 954 bp open reading frame. The deduced protein has 317 amino acid residues, with a predicted molecular weight of 35 kDa, isoelectric point of 5.38, and contains a conserved nanos RNA binding domain. The conserved region of the deduced protein shares 73% homology with the nanos protein conserved region of Honeybee (Apis mellifera). This gene has been registered in the GenBank under the accession number EF647589. One encoding sequence of the nanos fragment has been successfully expressed in E. coli. Western blotting analysis indicates that homemade antiserum can specifically detect nanos protein expressed in prokaryotic cells.
基金Project supported by the Six-Talent-Peaks Project in Jiangsu Province of China(Grant No.XYDXX-072)the National Natural Science Foundation of China(Grant No.61372048).
文摘Circulators play a significant role in radar and microwave communication systems.This paper proposes a broadband and highly efficient plasmonic circulator,which consists of spoof surface plasmon polaritons(SSPPs)waveguides and ferrite disks to support non-reciprocal mode coupling.The simulated performance of symmetrically designed circulator shows that it has an insertion loss of roughly 0.5 dB while the isolation and return loss is more than 12 dB in the frequency range of 6.0 GHz–10.0 GHz(relative bandwidth of 50%).Equivalent circuit model has been proposed to explain the operating mechanism of the plasmonic circulator.The equivalent circuit model,numerical simulations,and experimental results are consistent with each other,which demonstrates the good performance of the proposed plasmonic circulator.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604382 and 11574140)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160236).
文摘Most of the current graphene plasmonic researches are based on the substrates with isotropic dielectric constant such as silicon.In this work,we investigate optical properties of graphene nanoribbon arrays placed on a uniaxially anisotropic substrate,where the anisotropy provides an additional freedom to tune the behaviors of graphene plasmons,and its effect can be described by a simple effective formula.In practice,the substrates of semi-infinite and finite thickness are discussed by using both the formula and full wave simulations.Particularly,the dielectric constants ε|| and ε⊥ approaching zero are intensively studied,which show different impacts on the transverse magnetic(TM) surface modes.In reality,the hexagonal boron nitride(hBN) can be chosen as the anisotropic substrate,which is also a hyperbolic material in nature.
基金supported by National Natural Science Foundation of China(Grant Nos.11505290,51576208 and11575239)the National Magnetic Confinement Fusion Science Program of China(No.2015GB102004)
文摘The tokamak simulation code (TSC) is employed to simulate the complete evolution of a disruptive discharge in the experimental advanced superconducting tokamak. The multiplication factor of the anomalous transport coefficient was adjusted to model the major disruptive discharge with double-null divertor configuration based on shot 61 916. The real-time feed-back control system for the plasma displacement was employed. Modeling results of the evolution of the poloidal field coil currents, the plasma current, the major radius, the plasma configuration all show agreement with experimental measurements. Results from the simulation show that during disruption, heat flux about 8 MW m-2 flows to the upper divertor target plate and about 6 MW m-2 flows to the lower divertor target plate. Computations predict that different amounts of heat fluxes on the divertor target plate could result by adjusting the multiplication factor of the anomalous transport coefficient. This shows that TSC has high flexibility and predictability.
文摘Esophageal cancer(EC)was an aggressive malignant neoplasm characterized by high morbidity and poor prognosis.Identifying the changes in DNA damage repair genes helps to better understand the mechanisms of carcinoma progression.In this study,by comparing EC samples and normal samples,we found a total of 132 DDR expression with a significant difference.Moreover,we revealed higher expression of POLN,PALB2,ATM,PER1,TOP3B and lower expression of HMGB1,UBE2B were correlated to longer OS in EC.In addition,a prognostic risk score based on 7 DDR gene expression(POLN,HMGB1,TOP3B,PER1,UBE2B,ATM,PALB2)was constructed for the prognosis of EC.Meanwhile,EC cancer samples were divided into 3 subtypes based on 132 DDR genes expressions.Clinical profile analysis showed cluster C1 and C2 showed a similar frequency of T2,which was remarked higher than that in cluster 3.Moreover,we found the immune cell inflation levels were significantly changed in different subtypes of EC.The infiltration levels of T cell CD8+,B cell and NK cells were greatly higher in cluster 2 than that in cluster 1 and cluster 3.The results showed T cell CD4+infiltration levels were dramatically higher in cluster 1 than that in cluster 2 and cluster 3.Finally,we perform bioinformatics analysis of DEGs among 3 subtypes of EC and found DDR genes may be related to multiple signaling,such as Base excision repair,Cell cycle,Hedgehog signaling pathway,and Glycolysis/Gluconeogenesis.These results showed DDR genes may serve as new target for the prognosis of EC and prediction of the potential response of immune therapy in EC.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61804176,61991441,and 62004218)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB01000000)the Youth Innovation Promotion Association of Chinese Academy of Sciences.
文摘The absorption coefficient is usually considered as a constant for certain materials at the given wavelength.However,recent experiments demonstrated that the absorption coefficient could be enhanced a lot by the PN junction.The absorption coefficient varies with the thickness of the intrinsic layer in a PIN structure.Here,we interpret the anomalous absorption coefficient from the competition between recombination and drift for non-equilibrium carriers.Based on the Fokker-Planck theory,a non-equilibrium statistical model that describes the relationship between absorption coefficient and material thickness has been proposed.It could predict the experimental data well.Our results can give new ideas to design photoelectric devices.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFB2200500and 2018YFB2200504)the National Natural Science Foundation of China(Grant Nos.22090010,22090011,and61504070)。
文摘A large amount of ultra-low-power consumption electronic devices are urgently needed in the new era of the internet of things,which demand relatively low frequency response.Here,atomic layer deposition has been utilized to fabricate the ion polarization dielectric of the Li PON-Al_(2)O_(3) hybrid structure.The Li PON thin film is periodically stacked in the Al_(2)O_(3) matrix.This hybrid structure presents a frequency-dependent dielectric constant,of which k is significantly higher than the aluminum oxide matrix from 1 k Hz to 200 k Hz in frequency.The increased dielectric constant is attributed to the lithium ions shifting locally upon the applied electrical field,which shows an additional polarization to the Al_(2)O_(3) matrix.This work provides a new strategy with promising potential to engineers for the dielectric constant of the gate oxide and sheds light on the application of electrolyte/dielectric hybrid structure in a variety of devices from capacitors to transistors.