A glass with composition of B_(2)O_(3)-Bi_(2)O_(3)-SiO_(2)-CaO-BaO-Al_(2)O_(3)-ZrO_(2)(BBSZ)modified Ba_(x)Sr_(1-x)TiO_(3)(BST,x=0.3 and 0.4)ceramics were prepared by a conventional solid state reaction method abided ...A glass with composition of B_(2)O_(3)-Bi_(2)O_(3)-SiO_(2)-CaO-BaO-Al_(2)O_(3)-ZrO_(2)(BBSZ)modified Ba_(x)Sr_(1-x)TiO_(3)(BST,x=0.3 and 0.4)ceramics were prepared by a conventional solid state reaction method abided by a formula of BST+y%BBSZ(y=0,2,4,7,and 10,in mass).The effect of BBSZ glass content on the structure,dielectric properties and energy storage characteristics of the ceramics was investigated.The dielectric constant reduced but the endurable electrical strength enhanced due to the BBSZ glass addition in BST ceramics.In particular,the dielectric loss of the ceramics at elevated temperature(e.g.200℃)can be strongly suppressed from tanδ>20%to tanδ<3% after BBSZ glass modification.For Ba_(0.3)Sr_(0.7)TiO_(3)+2%BBSZ ceramics,an optimized energy storage density(γ=0.63 J/cm^(3))and efficiency(η=91.6%)under an applied electric field of 160 kV/cm was obtained at room temperature.Meanwhile,the temperature dependent polarization-electric field(P-E)hysteresis loops were measured to evaluate the energy storage characteristics of the ceramics potential for high voltage capacitor application at elevated temperatures.展开更多
Ce and W co-doped CaBi_(2)Nb_(2)O_(9) ceramics with chemical formula Ca_(0.96)Ce_(0.04)Bi_(2)Nb_(2-x)W_(x)O_(9)(CCBNW100x,x=0-0.07)are fabricated via conventional solid state sintering method,to investigate the effect...Ce and W co-doped CaBi_(2)Nb_(2)O_(9) ceramics with chemical formula Ca_(0.96)Ce_(0.04)Bi_(2)Nb_(2-x)W_(x)O_(9)(CCBNW100x,x=0-0.07)are fabricated via conventional solid state sintering method,to investigate the effect of W addition on the structure,electrical resistivity,dielectric and piezoelectric properties.A piezoelectric constant d33 of 13.4 pC/N is obtained in CCBN-W2 ceramics,>100% higher than that of pure CaBi_(2)Nb_(2)O_(9)(d_(33)=5.8e6.4 pC/N).Of particular significance is that the electrical resistivity of CCBN-W2 ceramics(r=3.7×109 U cm at 500℃)is three orders of magnitude higher than pure CaBi_(2)Nb_(2)O_(9)(r=2.9×10^(6) U cm at same temperature).All these properties,together with its low dielectric loss(tandδ0.13%)and excellent d33 thermal stability up to 800℃,merit the CCBN-W2 ceramics for high temperature piezoelectric sensing applications.展开更多
(0:74-x)(Na_(0.5)Bi_(0.5))TiO_(3)-xBaTiO_(3)-0.26SrTiO_(3)(x=0~0.1)(abbreviated as NBT-xBT-ST)lead-free ceramics were fabricated by a solid-state reaction method.The effect of Ba doping amount x on the structure and e...(0:74-x)(Na_(0.5)Bi_(0.5))TiO_(3)-xBaTiO_(3)-0.26SrTiO_(3)(x=0~0.1)(abbreviated as NBT-xBT-ST)lead-free ceramics were fabricated by a solid-state reaction method.The effect of Ba doping amount x on the structure and energy storage properties of NBT-xBT-ST ceramics were investigated.All the NBT-xBT-ST ceramics showed single perovskite structure with a pseudocubic phase.Ba doping effectively suppressed grain growth,in favor of forming small and uniform grains.The ceramics with a composition of x=0.04,an optimized energy storage density(γ=0.47 J/cm^(3))and efficiency(η=48:67%),under an applied electric field of 50 kV/cm,should be a candidate for solid-state compact pulsed power capacitor materials.展开更多
基金supported by National Natural Science Foundation of China(51767010)Science&Technology Key Research Project of Jiangxi Provincial Education Department(GJJ170760).
文摘A glass with composition of B_(2)O_(3)-Bi_(2)O_(3)-SiO_(2)-CaO-BaO-Al_(2)O_(3)-ZrO_(2)(BBSZ)modified Ba_(x)Sr_(1-x)TiO_(3)(BST,x=0.3 and 0.4)ceramics were prepared by a conventional solid state reaction method abided by a formula of BST+y%BBSZ(y=0,2,4,7,and 10,in mass).The effect of BBSZ glass content on the structure,dielectric properties and energy storage characteristics of the ceramics was investigated.The dielectric constant reduced but the endurable electrical strength enhanced due to the BBSZ glass addition in BST ceramics.In particular,the dielectric loss of the ceramics at elevated temperature(e.g.200℃)can be strongly suppressed from tanδ>20%to tanδ<3% after BBSZ glass modification.For Ba_(0.3)Sr_(0.7)TiO_(3)+2%BBSZ ceramics,an optimized energy storage density(γ=0.63 J/cm^(3))and efficiency(η=91.6%)under an applied electric field of 160 kV/cm was obtained at room temperature.Meanwhile,the temperature dependent polarization-electric field(P-E)hysteresis loops were measured to evaluate the energy storage characteristics of the ceramics potential for high voltage capacitor application at elevated temperatures.
基金financially supported by National Natural Science Foundation of China(61671224)and Science Foundation of Jiangxi Provincial Education Department of China(GJJ160919)the“Bairen Yuanhang”Project funding supported by Jiangxi Science and Technology Association.
文摘Ce and W co-doped CaBi_(2)Nb_(2)O_(9) ceramics with chemical formula Ca_(0.96)Ce_(0.04)Bi_(2)Nb_(2-x)W_(x)O_(9)(CCBNW100x,x=0-0.07)are fabricated via conventional solid state sintering method,to investigate the effect of W addition on the structure,electrical resistivity,dielectric and piezoelectric properties.A piezoelectric constant d33 of 13.4 pC/N is obtained in CCBN-W2 ceramics,>100% higher than that of pure CaBi_(2)Nb_(2)O_(9)(d_(33)=5.8e6.4 pC/N).Of particular significance is that the electrical resistivity of CCBN-W2 ceramics(r=3.7×109 U cm at 500℃)is three orders of magnitude higher than pure CaBi_(2)Nb_(2)O_(9)(r=2.9×10^(6) U cm at same temperature).All these properties,together with its low dielectric loss(tandδ0.13%)and excellent d33 thermal stability up to 800℃,merit the CCBN-W2 ceramics for high temperature piezoelectric sensing applications.
基金supported by National Natural Science Foundation of China(Grant No.51767010)and Science&Technology Key Research Project of Jiangxi Provincial Education Department(Grant No.GJJ170760).
文摘(0:74-x)(Na_(0.5)Bi_(0.5))TiO_(3)-xBaTiO_(3)-0.26SrTiO_(3)(x=0~0.1)(abbreviated as NBT-xBT-ST)lead-free ceramics were fabricated by a solid-state reaction method.The effect of Ba doping amount x on the structure and energy storage properties of NBT-xBT-ST ceramics were investigated.All the NBT-xBT-ST ceramics showed single perovskite structure with a pseudocubic phase.Ba doping effectively suppressed grain growth,in favor of forming small and uniform grains.The ceramics with a composition of x=0.04,an optimized energy storage density(γ=0.47 J/cm^(3))and efficiency(η=48:67%),under an applied electric field of 50 kV/cm,should be a candidate for solid-state compact pulsed power capacitor materials.