A nanocrystalline TiN graded coating was prepared on Ti6Al4V alloy by DC reactive magnetron sputtering method. The microstructure and mechanic properties of the coating were investigated. The electrochemical corrosion...A nanocrystalline TiN graded coating was prepared on Ti6Al4V alloy by DC reactive magnetron sputtering method. The microstructure and mechanic properties of the coating were investigated. The electrochemical corrosion and tribocorrosion of the coated specimens in physiological environment were compared with those of Ti6Al4V substrate. The results show that the gradient distribution of nanocrystalline TiN is favorable for releasing the inner stress in the coating, which increases adhesion strength to 90 N. The compact structure and refined-grains of the coating result in the surface nanohardness of 28.5 GPa. The corrosion protection efficiency of the nanocrystalline TiN coating reaches 96.6%. The tribocorrosion resistance of the coating increases by 100 times in comparison with that of Ti6Al4V substrate. The high chemical stability and H3/E2 ratio (where H is hardness, and E is elastic modulus) of the nanocrystalline TiN coating are responsible for good corrosion and wear resistances.展开更多
The electrochemical corrosion behavior of the dental Ti50 Zr alloy with and without nanocrystalline(TiZr)N coating was comparatively investigated in artificial saliva solutions with different pH values and fluoride io...The electrochemical corrosion behavior of the dental Ti50 Zr alloy with and without nanocrystalline(TiZr)N coating was comparatively investigated in artificial saliva solutions with different pH values and fluoride ion concentrations. The chemical stability of the passive films on the coated and non-coated Ti50 Zr alloy was evaluated by calculating passive film thickness. The chemical compositions and valence structures of the passive films were analyzed by X-ray photoelectron spectroscopy(XPS). The results show that the(TiZr)N-coated alloy displays distinctly decreased corrosion rate and increased impedance compared with Ti50 Zr alloy in nonfluoridated and fluoridated acidic solutions. Particularly, in the solution of pH = 3.9 and 0.15% NaF-containing, the corrosion protection efficiency of(TiZr)N coating reaches90%. The excellent corrosion resistance of the coated alloy is attributed to that the nanocrystallines in(TiZr)N coating decreases micropores and crack defects, which strongly impedes the corrosive ions diffusion and electrode process at Ti substrate/coating interface. Meanwhile,(TiZr)N coating shows good passivation behavior in acidic solution and active–passive transition behavior in fluoridated acidic solution. The coated Ti50 Zr alloy with high chemical stability has potential application prospect for dental implants.展开更多
基金Project(51525101) supported by the National Natural Science Foundation of China
文摘A nanocrystalline TiN graded coating was prepared on Ti6Al4V alloy by DC reactive magnetron sputtering method. The microstructure and mechanic properties of the coating were investigated. The electrochemical corrosion and tribocorrosion of the coated specimens in physiological environment were compared with those of Ti6Al4V substrate. The results show that the gradient distribution of nanocrystalline TiN is favorable for releasing the inner stress in the coating, which increases adhesion strength to 90 N. The compact structure and refined-grains of the coating result in the surface nanohardness of 28.5 GPa. The corrosion protection efficiency of the nanocrystalline TiN coating reaches 96.6%. The tribocorrosion resistance of the coating increases by 100 times in comparison with that of Ti6Al4V substrate. The high chemical stability and H3/E2 ratio (where H is hardness, and E is elastic modulus) of the nanocrystalline TiN coating are responsible for good corrosion and wear resistances.
基金financially supported by the National Natural Science Foundation of China (No.51525101)。
文摘The electrochemical corrosion behavior of the dental Ti50 Zr alloy with and without nanocrystalline(TiZr)N coating was comparatively investigated in artificial saliva solutions with different pH values and fluoride ion concentrations. The chemical stability of the passive films on the coated and non-coated Ti50 Zr alloy was evaluated by calculating passive film thickness. The chemical compositions and valence structures of the passive films were analyzed by X-ray photoelectron spectroscopy(XPS). The results show that the(TiZr)N-coated alloy displays distinctly decreased corrosion rate and increased impedance compared with Ti50 Zr alloy in nonfluoridated and fluoridated acidic solutions. Particularly, in the solution of pH = 3.9 and 0.15% NaF-containing, the corrosion protection efficiency of(TiZr)N coating reaches90%. The excellent corrosion resistance of the coated alloy is attributed to that the nanocrystallines in(TiZr)N coating decreases micropores and crack defects, which strongly impedes the corrosive ions diffusion and electrode process at Ti substrate/coating interface. Meanwhile,(TiZr)N coating shows good passivation behavior in acidic solution and active–passive transition behavior in fluoridated acidic solution. The coated Ti50 Zr alloy with high chemical stability has potential application prospect for dental implants.