Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from minin...Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from mining enterprises,and meet the needs of mine reinforcement and seepage control,a double-liquid grouting material containing a high admixture of coal gangue powder/bottom ash geopolymer was studied.The setting time,fluidity,bleeding rate,and mechanical properties of grouting materials were studied through laboratory tests,and SEM analyzed the microstructure of the materials.The results show that the total mixture of calcined gangue does not exceed 60%.And the proportion of bottom ash replacing cement should be within 30%.At the same time,the volume mixture of sodium silicate is 20%.And the water-solid ratio does not exceed 0.6.The stability of the slurry prepared under this ratio is good.The microstructure of the stone body is dense,and its strength can meet the requirements of rock reinforcement and seepage control.Its economic and environmental benefits are more significant than the traditional cement-silicate double-liquid grouting material.展开更多
Based on C-LSAT2.0,using high-and low-frequency components reconstruction methods,combined with observation constraint masking,a reconstructed C-LSAT2.0 with 756 ensemble members from the 1850s to 2018 has been develo...Based on C-LSAT2.0,using high-and low-frequency components reconstruction methods,combined with observation constraint masking,a reconstructed C-LSAT2.0 with 756 ensemble members from the 1850s to 2018 has been developed.These ensemble versions have been merged with the ERSSTv5 ensemble dataset,and an upgraded version of the CMSTInterim dataset with 5°×5°resolution has been developed.The CMST-Interim dataset has significantly improved the coverage rate of global surface temperature data.After reconstruction,the data coverage before 1950 increased from 78%−81%of the original CMST to 81%−89%.The total coverage after 1955 reached about 93%,including more than 98%in the Northern Hemisphere and 81%−89%in the Southern Hemisphere.Through the reconstruction ensemble experiments with different parameters,a good basis is provided for more systematic uncertainty assessment of C-LSAT2.0 and CMSTInterim.In comparison with the original CMST,the global mean surface temperatures are estimated to be cooler in the second half of 19th century and warmer during the 21st century,which shows that the global warming trend is further amplified.The global warming trends are updated from 0.085±0.004℃(10 yr)^(–1)and 0.128±0.006℃(10 yr)^(–1)to 0.089±0.004℃(10 yr)^(–1)and 0.137±0.007℃(10 yr)^(–1),respectively,since the start and the second half of 20th century.展开更多
Treponema is a Gram-negative anaerobic bacterium,among which the pathogenic Treponema can cause various diseases,such as venereal syphilis(Treponema pallidum),yaws(Treponema carateum),and oral diseases(Treponema denti...Treponema is a Gram-negative anaerobic bacterium,among which the pathogenic Treponema can cause various diseases,such as venereal syphilis(Treponema pallidum),yaws(Treponema carateum),and oral diseases(Treponema denticola and Treponema medium).Although different from conventional lipopolysaccharides,the extracellular glycoconjugate of Treponema may still be a potential antigen and provide a candidate for vaccine development.Hence,we completed the first chemical synthesis of Treponema medium ATCC 700293 tetrasaccharide precursor containing L-ornithine(L-Orn)and D-aspartic acid(D-Asp)derivatives.The efficiency of non-reducing end disaccharide formation has been improved by optimizing the assembly of the protecting groups in the donors and acceptors.Our[3+1]glycosylation strategy attempted to reduce the length of the acceptor to increase the nucleophilicity of the hydroxyl group,thereby improving the efficiency of synthesizing the target tetrasaccharide.The L-Orn derivative was introduced at the final stage due to its influence on the glycosylation stereospecificity and efficiency.Therefore,the successful introduction of two amino acid derivatives and the synthesis of a tetrasaccharide precursor with complex functional-group modifications have provided valuable insights for synthesizing other complex bacterial glycans.展开更多
The distribution and dynamic changes of regional or national population data with long time series are very important for regional planning,resource allocation,government decision-making,disaster assessment,ecological...The distribution and dynamic changes of regional or national population data with long time series are very important for regional planning,resource allocation,government decision-making,disaster assessment,ecological protection,and other sustainability research.However,the existing population datasets such as LandScan and WorldPop all provide data from 2000 with limited time series,while GHS-POP only utilizes land use data with limited accuracy.In view of the limited remote sensing images of long time series,it is necessary to combine existing multi-source remote sensing data for population spatialization research.In this research,we developed a nighttime light desaturation index(NTLDI).Through the cross-sensor calibration model based on an autoencoder convolutional neural network,the NTLDl was calibrated with the same period Visible Infrared Imaging Radiometer Suite Day/Night Band(VIRS-DNB)data.Then,the geographically weighted regression method is used to determine the population density of China from 1990 to 2020 based on the long time series NTL.Furthermore,the change characteristics and the driving factors of China's population spatial distribution are analyzed.The large-scale,long-term population spatialization results obtained in this study are of great significance in government planning and decision-making,disaster assessment,resource allocation,and other aspects.展开更多
Astragalus membranaceus var.mongholicus(AMM),a member of the Leguminosae,is one of the most important medicinal plants worldwide.The dried roots of AMM have a wide range of pharmacological effects and are a traditiona...Astragalus membranaceus var.mongholicus(AMM),a member of the Leguminosae,is one of the most important medicinal plants worldwide.The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine.Here,we report the first chromosome-level reference genome of AMM,comprising nine pseudochromosomes with a total size of 1.47 Gb and 27868 protein-encoding genes.Comparative genomic analysis reveals that AMM has not experienced an independent wholegenome duplication(WGD)event after the WGD event shared by the Papilionoideae species.Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago,which may explain the large size of the AMM genome.Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded,and our data indicate that tandemduplication has been the main driver for expansion of these families.Among the expanded families,the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM,suggesting their roles in the biosynthesis of phenylpropanoid compounds.The functional versatility of 2,3-oxidosqualene cyclase genes in cluster Ⅲ may play a critical role in the diversification of triterpenoids in AMM.Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.展开更多
Global mean surface temperature(GMST)is one of the most important large-scale indicators for characterizing climate change on Earth,and Surface Temperature(ST)is also the most accurate key climate element currently un...Global mean surface temperature(GMST)is one of the most important large-scale indicators for characterizing climate change on Earth,and Surface Temperature(ST)is also the most accurate key climate element currently understood by scientists and the public.Even so,there have been extensive discussions about the accuracy of global(regional)surface temperature(air temperature)changes[lj.From the perspective of climatic data acquisition and data reliability,the current GMST series and the evaluation of global warming rates are all based on several observation-based datasets produced by combining anomalies of Land Surface Air Temperatures(LSAT)and Sea Surface Temperatures(SST).展开更多
Design and fabrication of earth-abundant electrocatalysts for oxygen evolution reaction(OER)is essential in improving the overall ef-ficiency of water electrolysis.In this work,we proposed a rapid and scalable synthes...Design and fabrication of earth-abundant electrocatalysts for oxygen evolution reaction(OER)is essential in improving the overall ef-ficiency of water electrolysis.In this work,we proposed a rapid and scalable synthesis route for fabricating Prussian blue analogue(PBA)nano cubes with tun able compositi ons and uniform particle size.With the structural ben efits of abu ndant surface sites,facile charge transfer behavior and favorable Co^(2+)-to-Co^(3+)pre-oxidation reaction,fast generation and accumulation of the catalytically active Co3+sites can be achieved for the CoCo PBA nano cubes,leadi ng to remarkable OER activity with simulta neously achieved low overpotential,large anodic current density,small Tafel slope as well as outstanding intrinsic activity.Of note,by performing Iong-term OER operati on,the CoCo PBA nano cubes exhibit a remarkable 5.5-folds performs nee enhan ceme nt,and obvious surface rec on struc-tion and the accumulation of high-valence Co species can be identified,proving the crucial role of pre-oxidation process in boosting the OER catalysis.This work proposed a un iversal approach for the rapid,scalable and con trollable fabricati on of the PBA-based materials,and the elucidation of the pre-oxidation process in facilitating the OER catalysis may provide useful guidanee for designing and optimizing advanced catalysts for energy-related electro-oxidation reactions in the future.展开更多
The development of advanced electrocatalysts for electro-oxidation reactions has attracted much attention because of the critical role of such electrocatalysts in improving the overall efficiency of coupled hydrogen p...The development of advanced electrocatalysts for electro-oxidation reactions has attracted much attention because of the critical role of such electrocatalysts in improving the overall efficiency of coupled hydrogen production.We have developed an efficient lanthanum-dopedα-Ni(OH)_(2) bifunctional catalyst with a 1D-2D-3D hierarchical nanostructure.It shows superior activity and stability in the anodic oxygen evolution reaction(OER)and urea oxidation reaction(UOR).Enrichment of the edge sites and conducting La doping inα-Ni(OH)_(2) phase enable formation and stabilization of abundant local Ni^(3+)ions.This guarantees ultralow onset potentials in electro-oxidation reactions.The 1D-2D-3D hierarchical nanostructure significantly boosts the in situ generation of high-valence active species,which results in efficient and stable OER and UOR performances,and the synergistic merit of doping-induced facile reaction kinetics.Because of the structural benefits of a large surface area,charge-transfer promotion,good structural stability,and bifunctionality,a 1%La-dopedα-Ni(OH)_(2) hierarchical nanostructure gives superior OER and UOR performances with low overpotentials,large catalytic current densities,and excellent operational stability.It is therefore a promising catalyst for use in simultaneous alkaline wastewater treatment and hydrogen production.展开更多
基金Funding Statement:The research described in this paper was financially supported by the National Natural Science Foundation of China(No.51974172)Innovation and Technology Program of Universities in Shandong Province,China(No.2020KJH001)+1 种基金National Natural Science Foundation of China(No.52274131)State Key Laboratory of Coal Mining and Clean Utilization(No.2021-CMCU-KF017).
文摘Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from mining enterprises,and meet the needs of mine reinforcement and seepage control,a double-liquid grouting material containing a high admixture of coal gangue powder/bottom ash geopolymer was studied.The setting time,fluidity,bleeding rate,and mechanical properties of grouting materials were studied through laboratory tests,and SEM analyzed the microstructure of the materials.The results show that the total mixture of calcined gangue does not exceed 60%.And the proportion of bottom ash replacing cement should be within 30%.At the same time,the volume mixture of sodium silicate is 20%.And the water-solid ratio does not exceed 0.6.The stability of the slurry prepared under this ratio is good.The microstructure of the stone body is dense,and its strength can meet the requirements of rock reinforcement and seepage control.Its economic and environmental benefits are more significant than the traditional cement-silicate double-liquid grouting material.
文摘Based on C-LSAT2.0,using high-and low-frequency components reconstruction methods,combined with observation constraint masking,a reconstructed C-LSAT2.0 with 756 ensemble members from the 1850s to 2018 has been developed.These ensemble versions have been merged with the ERSSTv5 ensemble dataset,and an upgraded version of the CMSTInterim dataset with 5°×5°resolution has been developed.The CMST-Interim dataset has significantly improved the coverage rate of global surface temperature data.After reconstruction,the data coverage before 1950 increased from 78%−81%of the original CMST to 81%−89%.The total coverage after 1955 reached about 93%,including more than 98%in the Northern Hemisphere and 81%−89%in the Southern Hemisphere.Through the reconstruction ensemble experiments with different parameters,a good basis is provided for more systematic uncertainty assessment of C-LSAT2.0 and CMSTInterim.In comparison with the original CMST,the global mean surface temperatures are estimated to be cooler in the second half of 19th century and warmer during the 21st century,which shows that the global warming trend is further amplified.The global warming trends are updated from 0.085±0.004℃(10 yr)^(–1)and 0.128±0.006℃(10 yr)^(–1)to 0.089±0.004℃(10 yr)^(–1)and 0.137±0.007℃(10 yr)^(–1),respectively,since the start and the second half of 20th century.
基金the National Natural Science Foundation of China(22325803,22077052,22277042,22107037,22177041,22207042)the China Postdoctoral Science Foundation(2021M691279)the National Key R&D Program of China(2023YFC2308000).
文摘Treponema is a Gram-negative anaerobic bacterium,among which the pathogenic Treponema can cause various diseases,such as venereal syphilis(Treponema pallidum),yaws(Treponema carateum),and oral diseases(Treponema denticola and Treponema medium).Although different from conventional lipopolysaccharides,the extracellular glycoconjugate of Treponema may still be a potential antigen and provide a candidate for vaccine development.Hence,we completed the first chemical synthesis of Treponema medium ATCC 700293 tetrasaccharide precursor containing L-ornithine(L-Orn)and D-aspartic acid(D-Asp)derivatives.The efficiency of non-reducing end disaccharide formation has been improved by optimizing the assembly of the protecting groups in the donors and acceptors.Our[3+1]glycosylation strategy attempted to reduce the length of the acceptor to increase the nucleophilicity of the hydroxyl group,thereby improving the efficiency of synthesizing the target tetrasaccharide.The L-Orn derivative was introduced at the final stage due to its influence on the glycosylation stereospecificity and efficiency.Therefore,the successful introduction of two amino acid derivatives and the synthesis of a tetrasaccharide precursor with complex functional-group modifications have provided valuable insights for synthesizing other complex bacterial glycans.
基金supported by National Natural Science Foundation of China[Grant Number 41930650]Ningxia Hui Autonomous Region Key Research and Development Project[Grant Number 2022BEG03064]State Key Laboratory INTERNATIONAL JOURNAL OF DIGITAL EARTH 2719 of Geo-Information Engineering and Key Laboratory of Surveying and Mapping Science and Geospatial Information Technology of MNR,CASM[Grant Number 2021-03-04].
文摘The distribution and dynamic changes of regional or national population data with long time series are very important for regional planning,resource allocation,government decision-making,disaster assessment,ecological protection,and other sustainability research.However,the existing population datasets such as LandScan and WorldPop all provide data from 2000 with limited time series,while GHS-POP only utilizes land use data with limited accuracy.In view of the limited remote sensing images of long time series,it is necessary to combine existing multi-source remote sensing data for population spatialization research.In this research,we developed a nighttime light desaturation index(NTLDI).Through the cross-sensor calibration model based on an autoencoder convolutional neural network,the NTLDl was calibrated with the same period Visible Infrared Imaging Radiometer Suite Day/Night Band(VIRS-DNB)data.Then,the geographically weighted regression method is used to determine the population density of China from 1990 to 2020 based on the long time series NTL.Furthermore,the change characteristics and the driving factors of China's population spatial distribution are analyzed.The large-scale,long-term population spatialization results obtained in this study are of great significance in government planning and decision-making,disaster assessment,resource allocation,and other aspects.
基金supported by grants from the City-University Cooperation Project of China(201904710111639).
文摘Astragalus membranaceus var.mongholicus(AMM),a member of the Leguminosae,is one of the most important medicinal plants worldwide.The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine.Here,we report the first chromosome-level reference genome of AMM,comprising nine pseudochromosomes with a total size of 1.47 Gb and 27868 protein-encoding genes.Comparative genomic analysis reveals that AMM has not experienced an independent wholegenome duplication(WGD)event after the WGD event shared by the Papilionoideae species.Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago,which may explain the large size of the AMM genome.Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded,and our data indicate that tandemduplication has been the main driver for expansion of these families.Among the expanded families,the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM,suggesting their roles in the biosynthesis of phenylpropanoid compounds.The functional versatility of 2,3-oxidosqualene cyclase genes in cluster Ⅲ may play a critical role in the diversification of triterpenoids in AMM.Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.
基金supported by the National Natural Science Foundation of China (41975105)the National Key Research & Development Program of China (2018YFC1507705 and 2017YFC1502301)。
文摘Global mean surface temperature(GMST)is one of the most important large-scale indicators for characterizing climate change on Earth,and Surface Temperature(ST)is also the most accurate key climate element currently understood by scientists and the public.Even so,there have been extensive discussions about the accuracy of global(regional)surface temperature(air temperature)changes[lj.From the perspective of climatic data acquisition and data reliability,the current GMST series and the evaluation of global warming rates are all based on several observation-based datasets produced by combining anomalies of Land Surface Air Temperatures(LSAT)and Sea Surface Temperatures(SST).
基金supported by the Key Research and Development Program of Shandong Province(No.2019GGX103051)the Natural Scie nee Foun dati on of Sha ndong Provi nee(No.ZR2018JL009)the National Natural Science Foundation of China(No.21927811).
文摘Design and fabrication of earth-abundant electrocatalysts for oxygen evolution reaction(OER)is essential in improving the overall ef-ficiency of water electrolysis.In this work,we proposed a rapid and scalable synthesis route for fabricating Prussian blue analogue(PBA)nano cubes with tun able compositi ons and uniform particle size.With the structural ben efits of abu ndant surface sites,facile charge transfer behavior and favorable Co^(2+)-to-Co^(3+)pre-oxidation reaction,fast generation and accumulation of the catalytically active Co3+sites can be achieved for the CoCo PBA nano cubes,leadi ng to remarkable OER activity with simulta neously achieved low overpotential,large anodic current density,small Tafel slope as well as outstanding intrinsic activity.Of note,by performing Iong-term OER operati on,the CoCo PBA nano cubes exhibit a remarkable 5.5-folds performs nee enhan ceme nt,and obvious surface rec on struc-tion and the accumulation of high-valence Co species can be identified,proving the crucial role of pre-oxidation process in boosting the OER catalysis.This work proposed a un iversal approach for the rapid,scalable and con trollable fabricati on of the PBA-based materials,and the elucidation of the pre-oxidation process in facilitating the OER catalysis may provide useful guidanee for designing and optimizing advanced catalysts for energy-related electro-oxidation reactions in the future.
基金This work was supported by the Key Research and Development Program of Shandong Province(grant No.2019GGX103051)the Natural Science Foundation of Shandong Province(grant No.ZR2018JL009)the National Natural Science Foundation of China(grant No.21927811).
文摘The development of advanced electrocatalysts for electro-oxidation reactions has attracted much attention because of the critical role of such electrocatalysts in improving the overall efficiency of coupled hydrogen production.We have developed an efficient lanthanum-dopedα-Ni(OH)_(2) bifunctional catalyst with a 1D-2D-3D hierarchical nanostructure.It shows superior activity and stability in the anodic oxygen evolution reaction(OER)and urea oxidation reaction(UOR).Enrichment of the edge sites and conducting La doping inα-Ni(OH)_(2) phase enable formation and stabilization of abundant local Ni^(3+)ions.This guarantees ultralow onset potentials in electro-oxidation reactions.The 1D-2D-3D hierarchical nanostructure significantly boosts the in situ generation of high-valence active species,which results in efficient and stable OER and UOR performances,and the synergistic merit of doping-induced facile reaction kinetics.Because of the structural benefits of a large surface area,charge-transfer promotion,good structural stability,and bifunctionality,a 1%La-dopedα-Ni(OH)_(2) hierarchical nanostructure gives superior OER and UOR performances with low overpotentials,large catalytic current densities,and excellent operational stability.It is therefore a promising catalyst for use in simultaneous alkaline wastewater treatment and hydrogen production.